Looking For Production Improvements – Then Do A Gemba Walk!

I recently went for a Gemba Walk with Ann Machan,  General Manager of Pentair. Instead of doing normal daily production meetings, their walk does everything you can do in a boardroom, plus so much more.

What is a Gemba Walk?
http://www.gembawalk.com/the-gemba-walk/

We met in her office and were explained the KPI (Key Performance Indicators) for the operation of the plant.  Each of these KPI’s are posted at each department where the work happens and are on a large white board.

The walk each morning starts at the shipping office with the rest of the staff. The operator in shipping  discusses how their department has done in the last 24 hours in relation to the KPI. Questions are raised about the next 24 hours and possible issues. Before we leave this department Ann asks a few personal questions to the shipper. He answers and they start to laugh. It is obvious that they have a good relationship in which information can flow freely.

Splitting up the group into three different teams to cover the entire plant, the walk continues. We went to three additional departments where again we were shown the KPIs and how they related to the department. Notes were taken and questions asked about possible issues and current problems. Information was exchanged from the previous days problem with the solution for one that was to be implemented that afternoon.

We assembled back all together in a central location in the plant. A large board with people’s names (Responsible for Department) was listed on the left side and twenty one numbers were written on the top representing three weeks. The current week that they were on, followed by the next two weeks. This grid pattern was where they then discussed the walk and the issues raised. To the right of the board a chart was placed. This chart contained the total number of problems/issues solved for each department and total company. A graph was also displayed showing the growing trend. Underneath this chart were the KPI charts that all showed either sustained or improved performance.

We started with the previous days issues under yesterdays date. A status update was given and the posted note was moved to either the completion clip at the side or put under a future date. When this was complete, a representative of each of the three groups when through their list of issues. These were then assigned and placed on the board. Problems that required additional investigation were discussed briefly and then the 5 why process was assigned to the person who had the greatest knowledge.

This whole process took about one hour. The Gemba walk accomplished the following:

  • Everyone’s understanding on the current company situation based upon the KPIs
  • Everyone knowing exactly what is expected
  • Everyone taking pride and knowing they are doing a good job
  • Everyone knowing someone is there to help

I found the whole experience of the Gemba walk fascinating. It is the only way that I see that you can have clear lines of communication to all staff. The way in which to grow as a company is to learn from our workers and in turn we will teach them.  It was an opportunity to:

  • See the work being done
  • Experiment with ideas
  • Learn from all parties involved
  • Explain why things are this / that way
  • Watch what is being done

Take your own Gemba walk on your production floor. Let me know how it turns out.

If you have any questions or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.

The Secret of Using Timers

Timers are used in the majority of PLC programs. There are also a wide variety of off the shelf industrial timers that you can use. The implementation of timers can be vast, however it all starts with a TIMING CHART.

A timing chart is the secret behind understanding of the timer that you need in your application. Making a timing chart before writing the program will ensure that all of the information will be accounted.

The timing chart is mapped out on a x and y plain. The ‘y’ plain has the state of the input on/off (1 or 0). The ‘x’ plain will show time.

Lets take a look at a timing chart for an On-Delay Timer. This is the basic operation for an Omron H3BR industrial timer.

Power –  When dealing with PLC’s we must consider when power to the unit is removed what happens to the current time and output conditions.
Start – In this case the start signal is momentary to start the time cycle. (t) We could modify this signal to be maintained until the output switches.
Output – The output will show when it turns on. This can also indicate the opposite, and show when it turns off.
Time – Time is shown by the relationship between the start signal and the output. Our example shows timing starts on the leading edge of the Start. This could have also been on the trailing edge.

Here is the same on-delay timing chart with some more detail. Several conditions are added to the chart.

These conditions prompt us to ask the following questions.
What happens when:

  • Power is removed / restored
  • Multiple start signals are received
  • Do we need a Reset signal. If so what happens during its operation
  • Do we need a display of the time. Present Value (PV) / Set Value (SV)

As you can see the timing chart is vital in determining how the sequence will be performed. This is the exact same method that I use when determining timing sequences in a PLC program.

Lets look at an example.

When we hit the start button, the warning light then comes on. After a fixed time the warning light goes off and the motor starts. The motor will run until the stop button is hit.

We will start by using the Start / Stop Circuit we did earlier.

You will notice that we have added an internal memory bit (C0) as our Start Sequence. This is a memory retentive bit, so we can use the (ST0) $FirstScan to make this circuit non-memory retentive. If power goes off, or the PLC is put into program mode the circuit does not remember the last state. It will default to be off.
The sequence is as follows:

  • Start pressed
  • TMR starts to time (10seconds)
  • Warning output comes on
  • After TMR (10seconds)
    • Warning output goes off
    • Motor output comes on
  • Stop pressed
    • TMR is reset to 0
    • Warning light off
    • Motor is off

Every PLC has timers. They all have different types depending on what you are trying to achieve. It will all start with your Timing Chart.

Watch on YouTube : Learn PLC Programming – Free 8 – The Secret of Timers

If you have any questions or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.

Lubrication basics

I recently went to a seminar on lubrication basics. This was presented by Mike Deckert of Flo Components Ltd.

So why talk about lubrication on a industrial automation website? Lubrication is vital in maintaining uptime on equipment. It is often thought of near the end of most automation projects, but it should be a principle component of all projects. If a piece of equipment moves, it will probably need lubrication. We often talk about MTBF (Mean Time Before Failure) on equipment. MTBF will be very low if lubrication is neglected.

In a study conducted by a major component manufacturer, over 50% of failures are the result of improper lubrication.  (Pins and Bushing)

  • Lubrication Related Failures: 54%
    • Inadequate Lubrication – 34.4%
    • Contamination – 19.6%
  • Installation Errors – 17.7%
  • Overload – 6.9%
  • Storage and Handling Errors – 2.8%
  • Other 18.6 %

Bearings fail in a plant for many reasons. Manual lubrication is still the dominant method of lubrication for grease bearings. 95% of all bearings are manually lubed. With plant production increasing the scheduled service time between has lengthened. Maintenance staff have generally been reduced resulting in fewer people carrying out the lubrication requirements.

Lubrication has the following functions:

  • Reduce Friction
  • Reduce Wear
  • Helps Dampen Shock or Absorb Shock
  • Reduce Temperature
  • Minimize Corrosion
  • Seal out Contaminants

Lubrication interval depends on the following:

  • Metal to metal contact area of bearing
  • Environment (Application)
  • Machine Speed
  • Operating Temperature
  • Type of Grease

Not all grease is the same. Grease is a solid or semi-solid formed when a thickening agent is dispersed in the oil base. Additives give grease their final special properties. The National Lubrication Grading Index  (NLGI) will grade the grease from 000 to 6, but this is not the whole story. Always look at the manufactures specification. Base oil viscosity can be completely different but still have the same NLGI.

Why are automatic lubrication systems better?

  • Grease evenly distributed
    • The best time to grease is when the object is in motion. This spreads the grease evenly.
  • Will not over lubricate
    • Grease is delivered by measured injection. This prevents seals from blowing out.
  • Correct amount of grease is applied
    • This will ensure the maximum life of the equipment.
  • Environmentally safe

Lubrication is a vital component to automation. MTBF can be increase if we plan on ensuring that our moving parts are well maintained.

Flo Components Ltd. is an excellent company to help you understand and maintain your systems. They have a library full of information on their website.

www.flocomponents.com/Library.htm

I encourage you to check this out and make lubrication part of your automation projects. If you have any questions, or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.

Here’s a Quick Way to Wire NPN and PNP devices

Here’s a Quick Way to Wire NPN and PNP devices

I get asked often on how to wire NPN and PNP devices to the programmable logic controller. This can be confusing at first when looking at the wiring diagrams. I have managed to destroy a few sensors in the process….. so lets get started and I will share my experiences.


NPN and PNP refer to the transistor in the output device.
NPN – Negative Positive Negative Switching. Sometimes referred to as ‘Sinking’ the load.  People have told me that when the NPN sensor blows it has a tendency to blow in an open state. (No Signal)
PNP – Positive Negative Positive Switching. Sometimes referred to as ‘Sourcing’ the load. People have told me that when the PNP sensor blows it has a tendency to blow in a closed state. (Signal On)

When the sensor blows, (malfunctions) it usually will also take out the power supply. (Fuse) It generally does not matter if you use NPN or PNP sensors provided they are all connected to the PLC using isolated commons.

You cannot mix PNP and NPN sensors on the same common point for inputs to the PLC. If you do mix the sensors, then the different common points on the PLC must be isolated from each other. This means that the commons are not connected internally to each other. Not ensuring this takes place will provide a short across the power supply and blow your sensors and supply. In general, machines tend to use all NPN or all PNP only.

Colour coding of the wires vary. Do not always rely on the colour code of the wires for connection. Refer to the wire diagrams in the documentation.

The following is a wire diagram of an open collector PNP sensor. You will notice that the load appears between the 0V (Blue)  and Switching wire (Black). When connecting to the PLC, the PLC input acts as the load. The 0V (Blue) will be attached to the common input and the Switching wire (Black) will be attached to the input number.

The following is a wire diagram of an open collector NPN sensor. You will notice that the load appears between the +V (Brown)  and Switching wire (Black). When connecting to the PLC, the PLC input acts as the load. The +V (Brown) will be attached to the common input and the Switching wire (Black) will be attached to the input number.

As you can see a direct short will be created if NPN and PNP sensors are wired into the PLC on the same common. The following shows an example of wiring of the 3 wire sensors into a PLC with isolated commons.

Watch on YouTube : Wiring NPN Sensor to PLC

Watch on YouTube : Wiring PNP Sensor to PLC

Watch on YouTube : Wiring Contact (Discrete) PLC Inputs

Wiring Interposing Relays
Watch on YouTube
: Wiring NPN and PNP Sensors into the PLC with an Interposing Relay
If you have any questions or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.

How to make a Start / Stop / Jog circuit in a PLC

Looking at a stop start jog circuit in the PLC will help us in understanding the differences in hard wiring the circuit and programming.

Lets start with the basic stop stop circuit.
Here is what it looks like hard wired. (Physical switches wired to outputs devices, such as motor contactor and relays.)

When the start pushbutton (NO) is pressed the power is passed through the stop pushbutton (NC) to the control relay (CR). The CR contact closes and ‘seals in’  the start pushbutton. The start pushbutton can now be released because the CR contacts allow the power to pass through to the CR.

NO – Normally Open – This refers to the state of the input  device if nothing acts upon it. 
NC – Normally Closed – This refers to the state of the input device if nothing acts upon it.

Lets take a look at the PLC program for the above wiring diagram.

The first thing that you will notice is that the input for Stop is NO contact and not NC. This is because the actual signal wired in the input is NC and we do not want to inverse this signal. You can see that the stop input is currently on in the program.
If we hit the start pushbutton then the circuit is complete and the output CR turns on.

Letting go of the start pushbutton, the output remains on because the CR input seals in the start pushbutton.

Pressing the stop pushbutton will break the circuit and turn off CR.

Letting go of the stop pushbutton will return us back to the original state shown above.

Adding a jog input to the hard wiring diagram will look something like this:

You can see that the diagram will work the exact same as the circuit above with the start and stop pushbuttons. The jog when pushed will break the sealing contact, and then make a bypass of the start pushbutton. This will keep the M coil on as long as the jog button is pressed. Letting go of the jog will stop the bypass of the start pushbutton which will stop M coil. When the jog returns to the original state M input will already be off so it will not keep M coil on.
The action on the jog is referred to as a Break before Make device. The jog pushbutton will break the circuit before making another connection.

Sometimes in programming a PLC it can be beneficial to think of the inputs as Make before Break. Inputs are made before the previous ones are broken. The programmable controller will scan the program from left to right, top to bottom. The outputs from the rung above are available to the rungs below. Here is a previous article on PLC scanning.
Lets take a look at PLC program with a jog that will not work.

Even though this looks like it would work… Remember that the contacts in the PLC are make before break. You can jog the unit and it will turn on but as soon as you release your finger off of the pushbutton the not jog input will seal the CR in. The output will not be able to turn off.

We must consider the delay from on to off when looking at the PLC program for this circuit.
Here is a circuit that will work:

Notice that we create a delay from on to off by turning on an intermediate bit in the program.

Another way to do start stop circuits in the PLC is to use the instructions Set (SET)  and Reset (RST).
The set will have all of the conditions to turn on a bit in memory and the reset will have all of the conditions to turn off a bit in memory. These instructions are used to make the program easier to view and troubleshoot.
Here is the same logic above using the set and reset instructions.

Notice that X10 Jog2 is in parallel with the Start. We use a trailing edge one shot in parallel with the Stop. This sets our delay so the output will turn off.

Watch on YouTube :  Learn PLC Programming – Free 4

If you have any questions or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.