Tag Archives: how plc works

How PLC Outputs Work

This post is a further follow up from my original ‘Here’s a Quick Way to Understand PLC Inputs and Outputs’. There are basically two different kinds of PLC outputs, Discrete and analog. Discrete outputs are either ‘ON’ or ‘OFF’; 1 or 0. You can think of them as a single light bulb. Analog outputs have a range to them. They are outputs that usually will control proportional valves, drive speeds, etc. They usually have one of the following signals that are outputted from the PLC: 4-20mA, 0-10VDC, 1-5VDC.

Discrete Outputs
PLC Outputs

The above diagram has three outputs. A coil, light and motor. The Ladder outputs Y0, Y1 and Y2 control the outputs respectfully. You will notice that when the Ladder output turns on, the corresponding output card bit LED turns on. This then will energise the output hardwired to the device.

The outputs are turned on or off at the end of every PLC Scan. The PLC logic is solved left to right, top to bottom in most PLCs. Physical outputs are not set / reset until an I/O refresh is performed at the end of every scan. This means that if I have a scan of 1msec, then the maximum time it will take to turn on/off the output is 1msec.

PLCs will sometimes have the ability to update the I/O in the middle of a scan. Please refer to your PLC manufacturers manual for this instruction. This can be used for updating the I/O quickly or controlling stepper drives for motors by giving them a pulse train output from the discrete PLC output. A pulse train is just a quick series of on/off states of the output.

Analog Outputs
PLC Analog Output to Motor Speed

An analog output converts a digital value to a voltage or current level that can be used to control (vary) physical outputs. In the example above we are controlling the speed of the motor. Words in the PLC will control the analog value.
Example:
4 – 20 mA current Output – 8 bit resolution
4 mA = 00000000 base 2 = 00 base 16
20 mA = 11111111 base 2 = FF base 16
For a review of numbering systems, follow the link below:
What Everybody Ought to Know About PLC (Programmable Logic Controller) Numbering Systems

In the industrial environment noise from variable frequency drives, improper grounding, etc. can interfere with your analog input. The following post will show a quick method to reduce this noise.
The Secret Of Getting Rid Of Noise On Your Analog Signal

Previous Post:
How PLC Inputs Work

Watch on YouTube : How PLC Outputs Work

If you have any questions or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.

How PLC Inputs Work

This post is a further follow up from my original ‘Here’s a Quick Way to Understand PLC Inputs and Outputs’. There are basically two different kinds of PLC inputs, Discrete and analog. Discrete inputs are either ‘ON’ or ‘OFF’; 1 or 0. You can think of them as a single switch. Analog inputs have a range to them. They are inputs that usually will sense pressure, temperature, height, weight, etc.  They usually have one of the following signals that are inputted into the PLC: 4-20mA, 0-10VDC, 1-5VDC.

Discrete Inputs
PLC Input

The above diagram has two inputs. A normally open (NO)  and a normally closed (NC). When we talk about normally open and close, think of the condition of the input if no one touches anything. A normally open contact will not turn on the input to the PLC card in its ‘normal’ state. The normally closed contact will turn on the input to the PLC card in its ‘normal’ state.

Normally Open Input
The NO contact when activated will complete a circuit and turn on the PLC input. Ladder logic will then turn on if you use a normally open (Examine On) input in your program. See above diagram.

Normally Closed Input
The NC contact when activated will break a circuit and turn off the PLC input. Ladder logic will then turn off if you use a normally open (Examine On) input in your program. See above diagram.

As you can see with the diagram above this can get tricky to determine the on/off condition of the input. PLC logic can convert any signal by using normally closed (Examine Off) inputs in the program. In the field, I usually look at the PLC input lights, and wiring diagrams to determine the current state of the input. This is before diving into the program to troubleshoot.

Here is a link to wiring up discrete 3-wire sensors in the field. Here’s a Quick Way to Wire NPN and PNP devices

Analog Inputs
BinMaster Analog Input

An analog input converts a voltage or current level into a digital value that can be stored and processed in the PLC. They use words to determine the signal coming from the device.
Example:
4 – 20 mA current Input – 8 bit resolution
4 mA = 00000000 base 2 = 00 base 16
20 mA = 11111111 base 2 = FF base 16
For a review of numbering systems, follow the link below:
What Everybody Ought to Know About PLC (Programmable Logic Controller) Numbering Systems

In the industrial environment noise from variable frequency drives, improper grounding, etc. can interfere with your analog input. The following post will show a quick method to reduce this noise.
The Secret Of Getting Rid Of Noise On Your Analog Signal

Here are some additional posts that you might find helpful.
How to make a Start / Stop / Jog circuit in a PLC
The Secret of Using Timers
The Secret of Using Counters

Watch on YouTube : How PLC Inputs Work

Watch on YouTube : Wiring (Testing) Analog PLC Input Click

Watch on YouTube : Wiring (Testing) Analog PLC Input Omron CP1H

Watch on YouTube : Wiring Contact (Discrete) PLC Inputs

Watch on YouTube : Wiring PNP Sensor to PLC

Watch on YouTube : Wiring NPN Sensor to PLC

If you have any questions or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.