# How PLC Outputs Work

This post is a further follow up from my original ‘Here’s a Quick Way to Understand PLC Inputs and Outputs’. There are basically two different kinds of PLC outputs, Discrete and analog. Discrete outputs are either ‘ON’ or ‘OFF’; 1 or 0. You can think of them as a single light bulb. Analog outputs have a range to them. They are outputs that usually will control proportional valves, drive speeds, etc. They usually have one of the following signals that are outputted from the PLC: 4-20mA, 0-10VDC, 1-5VDC.

Discrete Outputs

The above diagram has three outputs. A coil, light and motor. The Ladder outputs Y0, Y1 and Y2 control the outputs respectfully. You will notice that when the Ladder output turns on, the corresponding output card bit LED turns on. This then will energise the output hardwired to the device.

The outputs are turned on or off at the end of every PLC Scan. The PLC logic is solved left to right, top to bottom in most PLCs. Physical outputs are not set / reset until an I/O refresh is performed at the end of every scan. This means that if I have a scan of 1msec, then the maximum time it will take to turn on/off the output is 1msec.

PLCs will sometimes have the ability to update the I/O in the middle of a scan. Please refer to your PLC manufacturers manual for this instruction. This can be used for updating the I/O quickly or controlling stepper drives for motors by giving them a pulse train output from the discrete PLC output. A pulse train is just a quick series of on/off states of the output.

Analog Outputs

An analog output converts a digital value to a voltage or current level that can be used to control (vary) physical outputs. In the example above we are controlling the speed of the motor. Words in the PLC will control the analog value.
Example:
4 – 20 mA current Output – 8 bit resolution
4 mA = 00000000 base 2 = 00 base 16
20 mA = 11111111 base 2 = FF base 16
What Everybody Ought to Know About PLC (Programmable Logic Controller) Numbering Systems

In the industrial environment noise from variable frequency drives, improper grounding, etc. can interfere with your analog input. The following post will show a quick method to reduce this noise.
The Secret Of Getting Rid Of Noise On Your Analog Signal

Previous Post:
How PLC Inputs Work

Watch on YouTube : How PLC Outputs Work

Thank you,
Garry

If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.

Use the information to inform other people how numbering systems work. Sign up now.

# Here’s a Quick Way to Understand PLC Inputs and Outputs

The term I/O means Input/Output. I/O can come in two different types; Discrete or Analog Most people starting out leaning about programmable logic controls (PLC) are taught all about discrete input and outputs. Data is received from devices such as push-buttons, limit-switches etc. and devices are turned on such as motor contactor, lights, etc. Discrete input and output bits are either on or off. (1 or 0) The following program will show a motor control circuit stop start. Motor off:

Motor on:

Analog inputs Common input variables for analog are temperature, flow, pressure, etc. They are converted to an electrical signal into a PLC analog input. Standard electrical signals are 0 – 20 mA, 4 – 20 mA, 0 – 10 volts DC, -10 – 10 volts DC. Note: It is recommended that a 4 – 20 mA signal is best. If voltage is required, a resistor can be added to get a voltage input. Analog outputs Common output variables for analog are speed, flow, pressure, etc. They are converted from a word in the PLC to the output of the analog. The range of signal is then outputted to the device to control the position, rate, etc. Standard electrical signals to the device are 4 – 20 mA, 0 – 10 volts DC, -10 – 10 volts DC. Both Analog Inputs and Outputs use words to determine the signal going to or from the device. Example: 4 – 20 mA current Input – 8 bit resolution 4 mA = 000000002 = 0016 20 mA = 11111111= FF16 Example: 4 – 20 mA current Output – 8 bit resolution 0016 = 000000002 = 4 mA FF16 = 111111112 =20 mA For a review of numbering systems, follow the link below: What everyone should know about PLC numbering systems

Let me know if you have any questions or need further information.
Thank you,
Garry

If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.

Use the information to inform other people how numbering systems work. Sign up now.