Category Archives: Sensors

Proximity (Capacitive, Inductive), Photo electric (Thru beam, Retro Reflective, Diffuse), Ultrasonic, etc. Sensors can be either discrete (On/Off) or Analog outputs.

Productivity Open P1AM Industrial Arduino P1000 Expansion Analog Combination Module


The productivity open P1AM I/O interface chip-set supports the full suite of Productivity 1000 I/O expansion modules. These modules are industry approved and proven in the industrial environment. Modern industrial signal levels for digital and analog inputs and outputs are used.

P1000 modules available to you include the following:
• Discrete
• Analog
• Temperature
• Relay
• High-speed Input
• PWM

We will be wiring and programming our P1-4ADL2DAL-1 combination analog input and output module that came with the P1AM-START1 ProductivityOpen starter kit with Ethernet. Let’s get started. Continue Reading!

Capacitive Pushbutton Sensor Switch and Indicator


Normal pushbuttons on a panel are usually a mechanical device. They can become “sticky” when too much dirt or oil is present. Capacitive push buttons do not have moving parts to stick, so the life expectancy is increased. Disinfectant sprays can be applied directly to a capacitive pushbutton and left to dry so it can be more effective for the safety of your operators.



Captron pushbutton sensor switches use capacitive sensing to detect when a hand or body part nears the device surface; built-in or stand-alone indicators provide multi-color signaling options. The robust IP69K design provides wear-free operation, plus resistance to water, oil, and harsh environments. These PNP NO DC-operated devices are available in 22mm, 50mm, and 60mm mounting diameters. Construction materials include plastic and stainless steel, aluminum, or polycarbonate. The corresponding 22mm LED signal indicator lights are also IP69K rated and have a 20mm diameter illuminated area; green, red, yellow, white, orange, and magenta signal colors are available.

We will be wiring a 22mm captron pushbutton to a click plc. Upon activating the sensor for half a second output on the click plc will turn on. The green LED on the captron will turn solid green. When the sensor is selected again, the output will turn off. The Green LED will then blink indicating that the output is off.
Let’s get started! Continue Reading!

Productivity 1000 PLC to Modbus TCP RTU Remote IO Controller BX-MBIO

The Productivity 1000 PLC can communicate to a remote I/O (input and output) controller modules using the Modbus protocol for communications. The BX-MBIO provides both Modbus RTU and Modbus TCP interfaces. Modbus RTU is a serial communication and Modbus TCP is an Ethernet communication. Modbus RTU is supported over an RS-485 serial connection. Modbus TCP is supported over an Ethernet connection. They function as listening/replying devices (slave, server) and can connect with any mastering (master, client) device that communicates using the Modbus protocol.
Previously we looked at the BX-MBIO Modbus RTU TCP Remote IO Controller wiring and configuration.
Modbus RTU TCP Remote IO Controller BX-MBIO
BX-MBIO Hardware Video
BX-MBIO Powering and Configuring Video


We will connect the Productivity 1000 PLC to the Modbus remote IO. This will be done using the Modbus TCP and Modbus RTU protocol. Ethernet and serial RS485 communication to the BX-MBIO unit will be the media.
The BX-MBIO remote I/O expansion units feature the following:
• RJ45 Ethernet port for communications via Modbus TCP
• RS485 serial port for communications via Modbus RTU
• Supports up to 8 additional Expansion Modules (Add the discrete or analog I/O you require)
• AC and DC powered units available
• AC powered units include an integral 24VDC auxiliary output power supply
• Power connector and serial port connector included
Let’s get started. Keep on Reading!

Productivity Open P1AM Industrial Arduino GPIO Inputs and Outputs


The P1AM-GPIO is an industrial rated shield for the P1AM-100 Arduino system. It provides a connection from most of the P1AM-100 GPIO pins to the front 18 position terminal block connector.

We will be looking at the wiring and programming of this input and output industrial rated shield that mounts on the left side of the P1AM-100 CPU arduino unit.

Analog points will be wired to a potentiometer and LED (light-emitting diode) for demonstration of the voltage range that we can input and output. Digital points will be wired for discrete input and output using a pushbutton switch and LED. PWM (pulse width modulation) will also be used to control the brightness of a LED connected to a digital output. Let’s get started. Continue Reading!

Wiring 3 Wire DC NPN and PNP Sensors




I recently received a question on PNP and NPN sensors. They wanted an explanation of what a sink is and how to wire one. Confusion over the Normally Open and Normally Closed function of the sensor is also a common question. Several diagrams will show a resistor attached to the blue wire and a load across the others, what does it all mean?

It is quite confusing sometimes the language we use for these devices. Sometimes it is the way we talk about the sensor and sometimes about the device we are connecting. (PLC)
We will break it down and go over the wiring to a PLC input. Let’s get started. Continue Reading!

ACC Automation 2019 Review

Accelerate Learning …
Accelerate Machines…
Accelerate Knowledge…
ACC Automation

It is a good time to be in the automation business. Technologies are merging and communicating like never before. What was impossible is now possible for the industrial plant floor. We are looking forward to the New Year and new possibilities for implementing your control solution.
Each year we like to take a few minutes and reflect on the past, current, and future of ACC Automation. You have helped us to build the site that you see today through questions, comments, and suggestions. Thank you.
2019 has been our best year yet thanks to you. Keep on Reading!

Universal Signal Conditioner and Isolator

Signal conditioners are used with analog current and voltage signals. They have the ability to change your input analog signal to another output analog signal. As an example, we can have 4-20mA analog input and change it to a 0-10VDC output signal so we can wire this into our PLC. Typically signal conditioners will also electrically isolate the input and output signals. This is either done by magnetic or optical isolation. You would usually specify the input and output signals that are required in your circuit to choose the signal conditioner required. Using a universal signal conditioner will take a variety of signals and is a great product to use in troubleshooting analog circuits.

We will be using a universal signal conditioner to convert a thermocouple temperature input into a 0-10VDC linear output. This will be wired into the analog card of the Click PLC.
Let’s get started. Continue Reading!

Wiring an Ultrasonic Proximity Sensor to the Click PLC

An ultrasonic sensor (switch) is able to detect object presence without physical contact (limit switch). No physical contact means that the switch has no parts that will wear out. The life span of the sensor is increased with less maintenance.
An ultrasonic sensor will use sound waves to detect objects. These sound waves are at a level that we cannot hear. Distance is measured by the time it takes to send and receive the ultrasonic wave. Objects can be measured the same no matter what the colour, transparency, shininess, or lighting conditions of the application.

We will be wiring an ultrasonic sensor into the input of our Click PLC. This will include a discrete and analog input signal. The UK1F-E7-0A is an 18mm diameter sensor that has a PNP N.O./N.C. selectable output with analog output of 0 -10 VDC. The sensing distance is 200mm to 2200mm and has a one-hertz switching capacity. A 4-pin M12 quick disconnect is available but we will be wiring in our 2m wired version. Let’s get started. Continue Reading!

Wiring a Capacitive Proximity NPN PNP Sensor to the Click PLC

A proximity sensor (switch) is able to detect object presence without physical contact like a limit switch. No physical contact means that the switch has no parts that will wear out. The life span of the sensor is increased with less maintenance.
A capacitive proximity sensor will detect ferrous and non-ferrous objects. The sensor works by oscillating the charge on the plates in the sensor. When an object is placed in front of the surface, the amount of current flow is detected. (Capacitance) The dielectric of objects will determine the distance that the object can be detected.

We will be wiring a capacitive proximity switch into the input of our Click PLC. The CK1-00-2H is an 18mm diameter, NPN/PNP N.O./N.C. selectable output with a 12mm sensing distance. That means that the sensor can be wired as positive (Sourcing) or negative (Sinking) switch. This unshielded 10 Hz switching frequency sensor also has a 4-pin M12 quick disconnect. Let’s get started. Continue Reading!

Wiring an Inductive Proximity NPN PNP Sensor to the Click PLC

A proximity sensor (switch) is able to detect object presence without physical contact like a limit switch. No physical contact means that the switch has no parts that will wear out. The life span of the sensor is increased with less maintenance.
An inductive proximity sensor will detect ferrous metals. The sensor develops an electric field when metal (sensing object) is introduced usually killing the oscillation circuit of the sensor triggering the output.

We will be wiring an inductive proximity switch into the input of our Click PLC. The AM1-A0-4A is an extended range 12mm tubular sensor that can be wired into the PLC as a sink or source input. Let’s get started. Continue Reading!