Category Archives: PLC Learning

This offers ways in which you can learn PLC programming.

BRX Do-More PLC HTTP Web Server – Website


We will now look at the BRX Do-More PLC Web Server. Ethernet equipped BRX CPUs and the Do-More Designer Simulator can now have a web server. This can be accessed by any web browser using the IP address of the BRX Do-More CPU.
A web server is server software or hardware dedicated to running this software, that can satisfy client requests on an Ethernet network. A web server can contain one or more websites and websites can have several web pages. A web server processes incoming network requests over HTTP and several other related protocols.
BRX Do-More PLC HTTP Web Server
The website built into the BRX Do-More has several different tabs that have basic information about the system, status information like warnings and errors, input and outputs, system logs, user logs, and user pages. We will be enabling the webserver on our BRX Do-More PLC and showing the information that is available. This is a great tool for troubleshooting the PLC as you will see. Let’s get started. Continue Reading!

Click PLC Real Time Clock (RTC) – Ladder Logic


The click plc has a real-time clock that will allow us to control outputs based on a date or time of day. This real-time clock (RTC) can be set from the click programming software or through the program of the controller. Our programs in the click can use the following calendar and clock values:
SD19 – RTC Year – 4 digits (2021)
SD20 – RTC Year – 2 digits (21)
SD21 – RTC Month – (00 to 12)
SD22 – RTC Day – (00 to 31)
SD23 – RTC Day of the Week – 1 Sunday to 7 Saturday
SD24 – RTC Hour – (00 to 23)
SD25 – RTC Minute – (00 to 59)
SD26 – RTC Second – (00 to 59)
click plc real time clock
We will be using the RTC – Real Time Clock in a sample program. This program will turn on an output Monday to Friday from noon until 1 pm. It will also adjust for daylight savings time. Let’s get started. Keep on Reading!

BRX Do-More PLC Peerlink Ethernet Network


The BRX Do-More PLC Peerlink Ethernet communication network is one of the easiest networks to set up and run. Peerlink is a shared programmable logic controller (PLC) common memory area within a local network. Do-More central processing units (CPUs) or DirectLogic PLC systems using ECOM100 modules can read the entire area and write to their programmed area if selected.
brx do-more plc peerlink
The network uses TCP/IP broadcast packets to publish the blocks of data PEERLINK (PL) memory to all of the devices attached. This broadcast will share the data network to the local domain only. Each member can optionally send data to the other members of the data-sharing network by electing to “publish” one or more blocks of PEERLINK (PL) memory.
This can sound confusing at first, but it is the simplest network to set up. You can have your Peerlink network up and running in a matter of minutes. We will be setting up and demonstrating the Peerlink network using a BRX BX-DM1E-18ED13 and the Do-More Simulator. Let’s get started. Continue Reading!

Productivity Suite PLC Simulator Software Free Download


The productivity suite software now contains a plc simulator. The software is a free download and is available from automation direct. This software will now allow you to test or troubleshoot your program without the physical hardware present. The entire family of controllers can use the simulator. P1000, P2000, and P3000 emulation can happen on the following parts of the productivity series hardware:
– P1000 CPU’s and local I/O stack, P2000 and P3000 CPU’s and local bases
– All basic I/O modules, both analog and digital
– Modbus TCP Server/Client connections on external Ethernet port
Productivity Suite PLC Simulator Software Free Download
The simulation mode is available on the Productivity Suite version 3.8.x.x or higher. We will be discussing the PAC (Programmable Automation Controller) PLC Simulator. Testing this simulator will be done using our first program (Start-Stop Circuit) and the PID instruction in our Productivity 1000 series. We will also be connecting to physical hardware after using our simulator to test the program. Let’s get started. Keep on Reading!

Omron CP1H PLC to CMore HMI EA9 RHMI


The C-More EA9 Series of human-machine interfaces (HMI) provides a way for the operator to control and will perform a lot of additional items. The free programming software is very user friendly and fully featured. Here are some of the additional items that this robust and powerful HMI can do besides communicating to programmable logic controllers (PLCs).
Send Email – This includes authentication for the email client protocol
Log Data – This can log data files to the internal memory or an external thumb drive (32G)
FTP Server – Use file transfer protocol to retrieve information from the HMI to a network. This can be done automatically with a batch file.
Web Server – This HMI can be a web server on your network
Remote Internet Access – Windows, Android, and IOS operating systems have the ability to take advantage of this remote access to the HMI. The programs are free and fully functional.
omron plc to cmore hmi
Our sample CP1H PLC program will use buttons and indicators to control a start/stop jog circuit. An analog input into the PLC will be scaled and displayed on a gauge and numeric display on our HMI screen. We will also write information to our 7 segment display on the CPU from our HMI screen. Omron serial host link protocol will be used to communicate over an RS485 serial cable. We will demonstrate remote access using our windows and android device. Let’s get started. Continue Reading!

BRX Do-More PLC Modbus ASCII Protocol

Do-more plc modbus ascii protocol will be used to communicate to a  Solo process temperature controller. A sample program will explain in detail how this is accomplished through a serial port.
Modbus is a communication method used for transmitting information over serial lines between electronic devices. The device requesting the information is called the Modbus Master (Client) and the devices supplying information are Modbus Slaves (Servers). This protocol was originally developed by Modicon systems.
Modbus protocol comes in basically three different types. Ethernet (Modbus TCP) or Serial (Modbus RTU or Modbus ASCII). Modbus TCP and Modbus RTU come as standard protocols in the BRX Do-More series of PLCs.
do-more plc modbus ascii
We will connect the BRX Do-More PLC to a Solo process temperature controller. This will be done using the Modbus ASCII protocol over serial RS485 communication wire. (Media) The present and set values (PV / SV) will be read from the Solo controller and the set value will be written when required. Let’s get started. Continue Reading!

Productivity 1000 PLC Modbus ASCII Protocol

We will not look at the productivity 1000 plc modbus ascii protocol to the Solo process temperature controller. This will be done in ladder logic on our productivity 1000 PLC. Modbus ASCII is a communication method used for transmitting information over serial lines between electronic devices. The device requesting the information is called the Modbus Master (Client) and the devices supplying information are Modbus Slaves (Servers). This protocol was originally developed by Modicon systems.
Modbus protocol comes in basically three different types. Ethernet (Modbus TCP) or Serial (Modbus RTU or Modbus ASCII). Modbus TCP and Modbus RTU come as standard protocols in the productivity series of PLCs.
productivity 1000 plc modbus ascii
We will connect the Productivity 1000 PLC to a Solo process temperature controller. This will be done using the Modbus ASCII protocol over serial RS485 communication wire. (Media) The present and set values (PV / SV) will be read from the Solo controller and the set value will be written when required. Let’s get started. Keep on Reading!

Productivity 1000 PLC to Modbus TCP RTU BX-MBIO


We will now look at the productivity 1000 plc modbus tcp rtu communication to the BX-MBIO controller.
The Productivity 1000 PLC can communicate to a remote I/O (input and output) controller modules using the Modbus protocol for communications. The BX-MBIO provides both Modbus RTU and Modbus TCP interfaces. Modbus RTU is a serial communication and Modbus TCP is an Ethernet communication. Modbus RTU is supported over an RS-485 serial connection. Modbus TCP is supported over an Ethernet connection. They function as listening/replying devices (slave, server) and can connect with any mastering (master, client) device that communicates using the Modbus protocol.
Previously we looked at the BX-MBIO Modbus RTU TCP Remote IO Controller wiring and configuration.
Modbus RTU TCP Remote IO Controller BX-MBIO
BX-MBIO Hardware Video
BX-MBIO Powering and Configuring Video

productivity 1000 plc modbus tcp rtu
We will connect the Productivity 1000 PLC to the Modbus remote IO. This will be done using the Modbus TCP and Modbus RTU protocol. Ethernet and serial RS485 communication to the BX-MBIO unit will be the media.
The BX-MBIO remote I/O expansion units feature the following:
• RJ45 Ethernet port for communications via Modbus TCP
• RS485 serial port for communications via Modbus RTU
• Supports up to 8 additional Expansion Modules (Add the discrete or analog I/O you require)
• AC and DC powered units available
• AC powered units include an integral 24VDC auxiliary output power supply
• Power connector and serial port connector included
Let’s get started. Keep on Reading!

Click PLC to Modbus TCP RTU Remote IO BX-MBIO


The Click PLC can communicate to a remote I/O (input and output) controller modules using the Modbus protocol for communications. The BX-MBIO provides both Modbus RTU and Modbus TCP interfaces for remote IO. Modbus RTU is a serial communication and Modbus TCP is an Ethernet communication. Modbus RTU is supported over an RS-485 serial connection. Modbus TCP is supported over an Ethernet connection. They function as listening/replying devices (slave, server) and can connect with any mastering (master, client) device that communicates using the Modbus protocol.
Previously we looked at the BX-MBIO Modbus RTU TCP Remote IO Controller wiring and configuration.
Modbus RTU TCP Remote IO Controller BX-MBIO
BX-MBIO Hardware Video
BX-MBIO Powering and Configuring Video

We will connect the Click Ethernet PLC to the Modbus remote IO. This will be done using the Modbus TCP and Modbus RTU protocol. Ethernet and serial RS485 communication to the BX-MBIO unit will be the media.
The BX-MBIO remote I/O expansion units feature the following:
• RJ45 Ethernet port for communications via Modbus TCP
• RS485 serial port for communications via Modbus RTU
• Supports up to 8 additional Expansion Modules (Add the discrete or analog I/O you require)
• AC and DC powered units available
• AC powered units include an integral 24VDC auxiliary output power supply
• Power connector and serial port connector included
Let’s get started. Keep on Reading!

BRX Do-More PLC to Modbus TCP RTU Remote IO BX-MBIO

The BRX Do-More PLC can communicate to a remote I/O (input and output) controller modules using the Modbus protocol for communications. The BX-MBIO provides both Modbus RTU and Modbus TCP interfaces. Modbus RTU is a serial communication and Modbus TCP is an Ethernet communication. Modbus RTU is supported over an RS-485 serial connection. Modbus TCP is supported over an Ethernet connection. They function as listening/replying devices (slave, server) and can connect with any mastering (master, client) device that communicates using the Modbus protocol.
Previously we looked at the BX-MBIO Modbus RTU TCP Remote IO Controller wiring and configuration.
Modbus RTU TCP Remote IO Controller BX-MBIO
BX-MBIO Hardware Video
BX-MBIO Powering and Configuring Video
brx do-more plc modbus remote io
We will connect the BRX Do-More PLC to the Modbus remote IO. This will be done using the Modbus TCP and Modbus RTU protocol. Ethernet and serial RS485 communication to the BX-MBIO unit will be the media.
The BX-MBIO remote I/O expansion units feature the following:
• RJ45 Ethernet port for communications via Modbus TCP
• RS485 serial port for communications via Modbus RTU
• Supports up to 8 additional Expansion Modules (Add the discrete or analog I/O you require)
• AC and DC powered units available
• AC powered units include an integral 24VDC auxiliary output power supply
• Power connector and serial port connector included
Let’s get started. Continue Reading!