Category Archives: PLC Learning

This offers ways in which you can learn PLC programming.

BRX Do-More PLC to Modbus TCP RTU Remote IO Controller BX-MBIO

The BRX Do-More PLC can communicate to a remote I/O (input and output) controller modules using the Modbus protocol for communications. The BX-MBIO provides both Modbus RTU and Modbus TCP interfaces. Modbus RTU is a serial communication and Modbus TCP is an Ethernet communication. Modbus RTU is supported over an RS-485 serial connection. Modbus TCP is supported over an Ethernet connection. They function as listening/replying devices (slave, server) and can connect with any mastering (master, client) device that communicates using the Modbus protocol.
Previously we looked at the BX-MBIO Modbus RTU TCP Remote IO Controller wiring and configuration.
Modbus RTU TCP Remote IO Controller BX-MBIO
BX-MBIO Hardware Video
BX-MBIO Powering and Configuring Video

We will connect the BRX Do-More PLC to the Modbus remote IO. This will be done using the Modbus TCP and Modbus RTU protocol. Ethernet and serial RS485 communication to the BX-MBIO unit will be the media.
The BX-MBIO remote I/O expansion units feature the following:
• RJ45 Ethernet port for communications via Modbus TCP
• RS485 serial port for communications via Modbus RTU
• Supports up to 8 additional Expansion Modules (Add the discrete or analog I/O you require)
• AC and DC powered units available
• AC powered units include an integral 24VDC auxiliary output power supply
• Power connector and serial port connector included
Let’s get started. Continue Reading!

Modbus RTU TCP Remote IO Controller BX-MBIO

The BX-MBIO Modules are remote I/O controller modules that provide a remote input and output (I/O) using the Modbus protocol for communications. They provide both Modbus RTU and Modbus TCP interface. Modbus RTU is a serial communication and Modbus TCP is an Ethernet communication. They function as listening/replying devices (slave, server) and can connect with any mastering (master, client) device that communicates using the Modbus protocol.
Modbus RTU is supported over an RS-485 serial connection. Modbus TCP is supported over an Ethernet connection. Any Modbus RTU master and Modbus TCP client that adheres to the Modbus.Org standards, and support the function codes listed can communicate with the BX-MBIO.
The remote I/O expansion units feature the following:
• RJ45 Ethernet port for communications via Modbus TCP
• RS485 serial port for communications via Modbus RTU
• Supports up to 8 additional Expansion Modules (Add the discrete or analog I/O you require)
• AC and DC powered units available
• AC powered units include an integral 24VDC auxiliary output power supply
• Power connector and serial port connector included

We will be looking at the BX-MBIO-M. This is the Do-More Modbus Remote I/O supported protocol unit. We will discuss the hardware and then connect and configure the unit to work with our existing BRX Do-more PLC. Let’s get started.
Continue Reading!

BRX Do-More PLC Ethernet Remote IO Controller BX-DMIO

The BRX Do-More PLC has its own line of remote input and output expansion units. You can add up to 8 I/O expansion units per controller (CPU) and 8 BRX expansion modules per expansion unit. This will make your system grow with your needs.

The remote I/O expansion units feature the following:
• All units have built-in Ethernet port, 10/100 Mbps
• MBIO units have onboard RS-485 port with removable 3-Pin connector
• Support for 8 expansion modules
• AC and DC powered units available
• AC powered units include an integral 24VDC auxiliary output power supply
• Power connector and serial port connector included

We will be looking at the BX-DMIO-M. This is the Do-More Ethernet Remote I/O supported protocol unit. We will discuss the hardware and then connect and configure the unit to work with our existing BRX Do-more PLC. Let’s get started. Continue Reading!

BRX Do-More PLC to Stride Field IO Modbus TCP

The BRX Do-More PLC can use remote inputs and outputs from Stride. The Stride Field I/O Modules are simple and compact. They provide an economical means to connect inputs and outputs to an Ethernet Modbus TCP communication network. Every module operates as a standalone Modbus TCP server and can be configured via a built-in web server.
Previously we looked at the Stride Field Remote IO Modules Modbus TCP Ethernet wiring and configuration.
Stride Field Remote IO Modules Modbus TCP Ethernet
Unboxing SIO MB12CDR and SIO MB04ADS Video
Powering and Configuring Video
We will be connecting two Stride remote inputs and outputs to the BRX Do-More PLC. Modbus TCP will be the protocol over Ethernet to communicate to the SIO-MB12CDR and SIO-MB04ADS units.

SIO-MB12CDR
– STRIDE discrete combo module, Input: 8-point, 12-24 VDC, sinking, Output: 4-point, relay, (4) Form C (SPDT) relays, 2A/point, (1) Ethernet (RJ45) port(s), Modbus TCP server.
SIO-MB04ADS
– STRIDE analog input module, 4-channel, current/voltage, 16-bit, isolated, input current signal range(s) of +/- 20 mA, input voltage signal range(s) of +/- 10 VDC, (1) Ethernet (RJ45) port(s), Modbus TCP server.
We will be reading an analog voltage into the BRX Do-More PLC from the remote IO unit. We will then set an output to pulse on and off at a time range indicated by this analog signal. The output will be on the other remote IO unit and will trigger the input to signal. We will look at the Frequency, Count, and Status of this input. Our BRX Do-More PLC program will also take into consideration watchdog (communication time out) and power-up events for the Stride remote input and output units.
Let’s get started. Continue Reading!

Stride Field Remote IO Modules Modbus TCP Ethernet




The Stride Field I/O Modules are simple and compact. They provide an economical means to connect inputs and outputs to an Ethernet Modbus TCP communication network. Every module operates as a standalone Modbus TCP server and can be configured via a built-in web server.

We will be looking at the following two Stride Remote IO Modules:
SIO-MB12CDR

– STRIDE discrete combo module, Input: 8-point, 12-24 VDC, sinking, Output: 4-point, relay, (4) Form C (SPDT) relays, 2A/point, (1) Ethernet (RJ45) port(s), Modbus TCP server.
SIO-MB04ADS

– STRIDE analog input module, 4-channel, current/voltage, 16-bit, isolated, input current signal range(s) of +/- 20 mA, input voltage signal range(s) of +/- 10 VDC, (1) Ethernet (RJ45) port(s), Modbus TCP server, external 20-30 VDC required.
We will be unboxing both of these units. Powering and then setting them up (configuring) via the webserver. Let’s get started. Continue Reading!

Click PLC Logging Data with Time and Date Stamp




The Click PLC can perform indirect addressing. This means that I can ask for information to be moved to and from locations in the PLC using a pointer that will indicate the address.

Stephen Covey in The 7 Habits of Highly Effective People said: “Begin With the End in Mind.” This is especially true when looking at storing or logging data within the programmable logic controller. (PLC) It is important to fully define what you want to accomplish with your program.

In our Click PLC example, we want to take a series of consecutive memory locations (DS1 to DS10) and store them in memory areas DS100 to DS4100 each minute. We will be able to store 400 entries (400 minutes) in our storage area. Every entry will include the real-time clock (RTC) of the Click. This will show the date and time of each entry. Let’s get started! Keep on Reading!

C-More EA9 HMI Series Headless RHMI Remote Control




Remote access will allow for viewing or controlling the C-More EA9 HMI series. We can use any windows based machine or use the C-More remote HMI App from Apple iTunes store, Google Play or Amazon App Store for mobile devices. This software is available free of charge.

Setting up the EA9 series for remote access and control is done through the C-More programming software to the HMI. We will be downloading the Windows application from the c-more panel. This is done through the web browser of your computer. We will also look at the c-more remote HMI app from Google play. Let’s get started. Continue Reading!

C-More EA9 HMI Series Headless RHMI Setup Screens

The C-more headless EA9-RHMI is programmed using the C-more Programming Software, EA9-PGMSW. The developed project is transferred from the PC to the HMI by either a USB or an Ethernet connection between the two. Previously we used the Ethernet connection to establish communication.

We will be using the USB connection to establish communication, save the program and review the setup screens of the Headless C-more.

Troubleshooting of the USB connection and windows driver will also be discussed. Let’s get started. Continue Reading!

C-More EA9 HMI Series Headless RHMI Panel

The C-More EA9 HMI Panel now comes in a headless version. (EA9-RHMI) All of the great features that are already built into the EA9 are available with the new headless model. This unit can be mounted within the cabinet and you can decide how to display the information.

This user-friendly, time-saving software platform allows your system data to now be shown to the operators in new ways thanks to the C-More headless HMI panel. Capabilities like data logging, FTP (File Transfer Protocol), secure email, remote HMI and data sharing can now be added to existing PLC hardware.

We will be unboxing this EA9-RHMI unit. Once power is supplied to the unit we will then establish communication and save the program. Let’s get started. Continue Reading!

C-More EA9 HMI Series Panel Sending Email

The C-More EA9 HMI Panel through the Ethernet port can send secure email messages. These mail messages with attachments can be sent through a specified mail server.

We will be sending an email using a Gmail account with authentication. This will also include an attached logged data file. We will also discuss how the C-More HMI can send a text (SMS) message. Let’s get started. Continue Reading!