BRX Do-More PLC to Modbus TCP RTU Remote IO Controller BX-MBIO

The BRX Do-More PLC can communicate to a remote I/O (input and output) controller modules using the Modbus protocol for communications. The BX-MBIO provides both Modbus RTU and Modbus TCP interfaces. Modbus RTU is a serial communication and Modbus TCP is an Ethernet communication. Modbus RTU is supported over an RS-485 serial connection. Modbus TCP is supported over an Ethernet connection. They function as listening/replying devices (slave, server) and can connect with any mastering (master, client) device that communicates using the Modbus protocol.
Previously we looked at the BX-MBIO Modbus RTU TCP Remote IO Controller wiring and configuration.
Modbus RTU TCP Remote IO Controller BX-MBIO
BX-MBIO Hardware Video
BX-MBIO Powering and Configuring Video

We will connect the BRX Do-More PLC to the Modbus remote IO. This will be done using the Modbus TCP and Modbus RTU protocol. Ethernet and serial RS485 communication to the BX-MBIO unit will be the media.
The BX-MBIO remote I/O expansion units feature the following:
• RJ45 Ethernet port for communications via Modbus TCP
• RS485 serial port for communications via Modbus RTU
• Supports up to 8 additional Expansion Modules (Add the discrete or analog I/O you require)
• AC and DC powered units available
• AC powered units include an integral 24VDC auxiliary output power supply
• Power connector and serial port connector included
Let’s get started. Continue Reading!

Productivity Open P1AM Industrial Arduino Operators


Operators in your Arduino sketches (programs) consist of comparison blocks, concatenate strings, bitwise operators, string conversion, ‘not’ operator, and compound operators. These operations generally will be used with other instructions in your sketch. It is important to understand what instructions are available and what they are designed to accomplish.

We will be looking at each of these instructions that are available using productivity blocks. A sample sketch will be shown that will use some of these operators. The sketch will get a number between 1 and 100 from the built-in Arduino IDE (integrated development environment) serial monitor. It will print the number on the monitor if it is between 1 and 100, else it will print try again. Let’s get started! Continue Reading!

Modbus RTU TCP Remote IO Controller BX-MBIO

The BX-MBIO Modules are remote I/O controller modules that provide a remote input and output (I/O) using the Modbus protocol for communications. They provide both Modbus RTU and Modbus TCP interface. Modbus RTU is a serial communication and Modbus TCP is an Ethernet communication. They function as listening/replying devices (slave, server) and can connect with any mastering (master, client) device that communicates using the Modbus protocol.
Modbus RTU is supported over an RS-485 serial connection. Modbus TCP is supported over an Ethernet connection. Any Modbus RTU master and Modbus TCP client that adheres to the Modbus.Org standards, and support the function codes listed can communicate with the BX-MBIO.
The remote I/O expansion units feature the following:
• RJ45 Ethernet port for communications via Modbus TCP
• RS485 serial port for communications via Modbus RTU
• Supports up to 8 additional Expansion Modules (Add the discrete or analog I/O you require)
• AC and DC powered units available
• AC powered units include an integral 24VDC auxiliary output power supply
• Power connector and serial port connector included

We will be looking at the BX-MBIO-M. This is the Do-More Modbus Remote I/O supported protocol unit. We will discuss the hardware and then connect and configure the unit to work with our existing BRX Do-more PLC. Let’s get started.
Continue Reading!

Productivity Open P1AM Industrial Arduino Program Control

Arduino programs (sketches) can be written in thousands of different ways. The best way will determine the purpose of your program and what you are trying to accomplish. To simplify the logic we will be looking at program control that can be achieved using productivity blocks.
Program control will look at subroutines (sometimes referred to as methods or functions), conditional statements and looping statements. These three items can be combined to reduce your code length, make your program easier to read, and in turn easier to troubleshoot.

We will be looking at each of these instructions that are available using productivity blocks. A sample program will then be discussed that will contain some program control as a demonstration. Let’s get started. Continue Reading!

BRX Do-More PLC Ethernet Remote IO Controller BX-DMIO

The BRX Do-More PLC has its own line of remote input and output expansion units. You can add up to 8 I/O expansion units per controller (CPU) and 8 BRX expansion modules per expansion unit. This will make your system grow with your needs.

The remote I/O expansion units feature the following:
• All units have built-in Ethernet port, 10/100 Mbps
• MBIO units have onboard RS-485 port with removable 3-Pin connector
• Support for 8 expansion modules
• AC and DC powered units available
• AC powered units include an integral 24VDC auxiliary output power supply
• Power connector and serial port connector included

We will be looking at the BX-DMIO-M. This is the Do-More Ethernet Remote I/O supported protocol unit. We will discuss the hardware and then connect and configure the unit to work with our existing BRX Do-more PLC. Let’s get started. Continue Reading!

Productivity Open P1AM Industrial Arduino Serial Monitor COM

The Arduino integrated development environment (IDE) has a built-in pop-up serial monitor. The serial monitor can be used to receive and send serial data to our Arduino program. This can be a great feature to help us in debugging or controlling Arduino programs. (Sketches)
We will be modifying the blinking light program that we did previously and add a one to an integer every time the P1AM-100 arduino CPU switch is on. This will be then printed on the serial monitor.

Removing the blinking light, we will run our program again an see the difference in speed with the delay instructions removed. Productivity blocks will be used to program our industrial arduino controller.
We will then look at escape character codes that we can use with our industrial arduino. Since the built-in serial monitor will not interpret the escape codes, we will be using Putty as our serial monitor program. Let’s get started. Continue Reading!

BRX Do-More PLC to Stride Field IO Modbus TCP

The BRX Do-More PLC can use remote inputs and outputs from Stride. The Stride Field I/O Modules are simple and compact. They provide an economical means to connect inputs and outputs to an Ethernet Modbus TCP communication network. Every module operates as a standalone Modbus TCP server and can be configured via a built-in web server.
Previously we looked at the Stride Field Remote IO Modules Modbus TCP Ethernet wiring and configuration.
Stride Field Remote IO Modules Modbus TCP Ethernet
Unboxing SIO MB12CDR and SIO MB04ADS Video
Powering and Configuring Video
We will be connecting two Stride remote inputs and outputs to the BRX Do-More PLC. Modbus TCP will be the protocol over Ethernet to communicate to the SIO-MB12CDR and SIO-MB04ADS units.

SIO-MB12CDR
– STRIDE discrete combo module, Input: 8-point, 12-24 VDC, sinking, Output: 4-point, relay, (4) Form C (SPDT) relays, 2A/point, (1) Ethernet (RJ45) port(s), Modbus TCP server.
SIO-MB04ADS
– STRIDE analog input module, 4-channel, current/voltage, 16-bit, isolated, input current signal range(s) of +/- 20 mA, input voltage signal range(s) of +/- 10 VDC, (1) Ethernet (RJ45) port(s), Modbus TCP server.
We will be reading an analog voltage into the BRX Do-More PLC from the remote IO unit. We will then set an output to pulse on and off at a time range indicated by this analog signal. The output will be on the other remote IO unit and will trigger the input to signal. We will look at the Frequency, Count, and Status of this input. Our BRX Do-More PLC program will also take into consideration watchdog (communication time out) and power-up events for the Stride remote input and output units.
Let’s get started. Continue Reading!

Productivity Open P1AM Industrial Arduino Variables Data Types

Data types in the C++ language are used to determine the variable or function applied for the given type. The type will determine the size of the storage (bits), and the method to interpret the information.

Microprocessors can only understand binary (on / off) numbering systems. The interpretation of these binary numbers will allow us to have several different data types. We will be reviewing the different data types that we can use in our sketches (programs) for our P1AM-100 arduino industrial controller. Only the variables data types available in ProductivityBlocks will be discussed, but references will be made for all data types that can be used. We will then look at a program that will list some integer and string variables. This will then be displayed on the serial monitor of the Arduino IDE. Let’s get started. Continue Reading!

Productivity 1000 PLC to Stride Field IO Modbus TCP

The Productivity Series of PLC can use remote inputs and outputs from Stride. The Stride Field I/O Modules are simple and compact. They provide an economical means to connect inputs and outputs to an Ethernet Modbus TCP communication network. Every module operates as a standalone Modbus TCP server and can be configured via a built-in web server.
Previously we looked at the Stride Field Remote IO Modules Modbus TCP Ethernet wiring and configuration.
Stride Field Remote IO Modules Modbus TCP Ethernet
Unboxing SIO MB12CDR and SIO MB04ADS Video
Powering and Configuring Video

We will be connecting two Stride remote inputs and outputs to the P1000 PLC. Modbus TCP will be the protocol over Ethernet to communicate to the SIO-MB12CDR and SIO-MB04ADS units.

SIO-MB12CDR
– STRIDE discrete combo module, Input: 8-point, 12-24 VDC, sinking, Output: 4-point, relay, (4) Form C (SPDT) relays, 2A/point, (1) Ethernet (RJ45) port(s), Modbus TCP server.
SIO-MB04ADS
– STRIDE analog input module, 4-channel, current/voltage, 16-bit, isolated, input current signal range(s) of +/- 20 mA, input voltage signal range(s) of +/- 10 VDC, (1) Ethernet (RJ45) port(s), Modbus TCP server.

We will be reading an analog voltage into the Productivity 1000 PLC from the remote IO unit. We will then set an output to pulse on and off at a time range indicated by this analog signal. The output will be on the other remote IO unit and will trigger the input to signal. We will look at the Frequency, Count, and Status of this input. Our Productivity 10000 PLC program will also take into consideration watchdog (communication time out) and power-up events for the Stride remote input and output units.
Let’s get started. Keep on Reading!

Productivity Open P1AM Industrial Arduino Program Structure

The P1AM-100 industrial controller is programmed with the Arduino IDE (Integrated Development Environment). The arduino IDE will allow us to write sketches (programs). These sketches have basic common elements like setup and loop.

We will be looking at these elements in our first program in the Arduino IDE and ProductivityBlocks. We will be modifying our first program with the selector switch. When it is on we will flash the CPU LED light on and off. When it is off we will ensure that the CPU LED light is off. Let’s get started.

Continue Reading!

Practical Tips and Techniques