Tag Archives: plc example

PLC Programming Example – Pick and Place

We will apply the five steps to PLC program development to a pick and place robot example. The example will use a BRX PLC communicating to Factory IO (3D Software Simulator). Developing the PLC program is a process that can be clearly defined. In our series on the five steps to PLC program development, we have done some similar practical examples.
Five Steps to PLC Program Development – Press
PLC Programming Examples:
Process Mixer
Shift Register (Conveyor Reject)
Paint Spraying
Delay Starting of 7 Motors

Define the task: (1) – Pick and Place Programming Example

Watch the sequence of operation video below.
Watch on YouTube : PLC Programming Example – Pick and Place Testing
Continue Reading!

PLC Programming – Delay Starting of 7 Motors

We will look at a PLC programming example of delaying the start of 7 motors. Each motor will be on a switch that the operator can select at any time. The motor outputs should have a 5-second delay between the outputs coming on.

This question originally came from PLCTalk.net. An original solution to the problem came from Peter Steinhoff. His solution is what we will be presenting. It is simple and straight forward.

We will be using the Do-more Designer software which comes with a simulator. This fully functional program is offered free of charge at automation directKeep on Reading!

Building a PLC Program That You Can Be Proud – 6

We will continue the series by looking at a sequencer controlling seven cylinders that can be taught. The cylinders can be operator programmed from the AdvancedHMI screen. You will be able to select what cylinders to activate at each step and program in 500 steps. Our PLC will be the Do-More from Automation Direct.
Cylinder Teach HMI 110-min



Here is a quick review of the programming series so far. If you are new to the site, we recommend reviewing the other parts in the series first.
In part 1 we looked at writing PLC programs to control a traffic light using discrete bits and then using timed sequencing using indirect addressing.
Part 2 used indirect addressing for inputs as well as output to control the sequence of pneumatic (air) cylinders in the program. Part 3 and 4 we returned to the traffic light application and expand our program significantly. We looked at the sequence of operations using Input, output, and mask tables.
In part 5 we used the AdvancedHMI software to create the game of Simon. A round in the game consists of the device lighting up one or more buttons in a random order, after which the player must reproduce that order by pressing the buttons. As the game progresses, the number of buttons to be pressed increases.

Sequence of Operation – Building a PLC Program 6

We will be using AdvancedHMI to communicate Modbus TCP to the Automation Direct Do-More Designer Software Simulator. The following is the sequence of operation:
Watch on YouTube: Running the Cylinder Sequence (PLC / HMI)
Note: All of the programs used are provided free of charge and are an excellent way to learn PLC / HMI programming.

The following table is the Modbus TCP memory map to the Do-More PLC:

Coil/Register Numbers Data Addresses Type Do-More PLC Table Name
00001-09999 0000 to 270E Read-Write MC1 to MC1023 Discrete Output Coils
10001-19999 0000 to 270E Read-Only MI1 to MI1023 Discrete Input Contacts
30001-39999 0000 to 270E Read-Only MIR1 to MIR2047 Analog Input Registers
40001-49999 0000 to 270E Read-Write MHR1 to MHR2047 Analog Output Holding Registers

Cylinder Teach HMI 100-min
Here are the inputs and outputs we will be using for our program:

Device Data Addresses Type Do-More PLC Description
Start Pushbutton 00011 Input MC11
Stop Pushbutton 00012 Input MC12
Jog Pushbutton 00013 Input MC13
Reset Pushbutton 00014 Input MC14
Run/ Jog Selector 00008 / 00015 Input/ Output MC8 / MC15  MC8 is the value and MC15 is the click
Light Stack 00010 / 00009 / 00008 Output MC10 / MC9 / MC8  Red / Green / Amber
Set Pushbutton 00071 Input MC71
Jog / Teach Selector 00070 Input MC70  MC70 on is teach mode
Sequence Step (Panel Meter) 40001 Output MHR1  Current step in the sequence
Inputs Actual 40002 Input MHR2  Show the actual inputs in binary format
Output Sequence 40003 Output MHR3  Show the actual outputs in a binary format
Input Sequence 40004 Input MHR4  Show the input sequence bits in a binary format
Cylinder 1 to 7 – value 00001 to 00007 Output MC1 to MC7  Determine if cylinder is on/off
Cylinder 1 to 7 – set (click) 00041 to 00047 Input MC41 to MC47  Set the cylinder button
Cylinder 1 to 7 – retract indicators 00021 to 00027 Input MC21 to MC27 Indicate cylinder has retracted
Cylinder 1 to 7 – extend indicators 00031 to 00037 Input MC31 to MC37 Indicate cylinder has extended
Cylinder 1 to 7 – extend / retract error indicators 00050 to 00063 Output MC50 to MC63 Indicate cylinder input error when jogging
HMI Design – Building a PLC Program 6

The first thing we will do is design the HMI. We have three main areas on the screen. Basic Controls, Cylinder Visualization, and the Sequence Step/Teach area. Please refer to the above reference chart for the inputs and outputs programmed on the screen.
Cylinder Teach HMI 130-min

Basic Controls:
This area will allow us to see what mode we are in via the stack light. Red – Stop
Yellow – Jog / Teach Mode – Troubleshooting
Green – Run
Cylinder Teach HMI 101-min

Cylinder Visualization:
Each cylinder will have indication lights to determine the status of the cylinder. (Extended / Retracted)
The cylinder will also have red indication lights to reflect the differences between the current sequence and the next sequence step. This is visible when we are in jog mode.
Cylinder Teach HMI 102-min

Sequence Step/Teach – Building a PLC Program 6

When in a jog or teach mode the sequence step is visible, which indicates the current step that we are on. The inputs and outputs are displayed as a binary value which represents the actual inputs and outputs. This is valuable when troubleshooting and finding errors in the system. The set button is visible when in teach mode. When pushed the outputs and inputs are set for that step and the sequence will then increment.
Cylinder Teach HMI 103-min

The following is the code for each of the words that the DataScribers are reading. This includes the code to change the word into a 16-bit binary value.

Private Sub DataSubscriber1_DataChanged(sender As Object, e As Drivers.Common.PlcComEventArgs) Handles DataSubscriber1.DataChanged
'Label1.Text = Hex(DataSubscriber1.Value)Dim i As Integer = DataSubscriber1.Value
Label1.Text = Convert.ToString(i, 2).PadLeft(16, "0") '16 bits
End Sub
Private Sub DataSubscriber2_DataChanged(sender As Object, e As Drivers.Common.PlcComEventArgs) Handles DataSubscriber2.DataChanged
'Label2.Text = Hex(DataSubscriber2.Value)
Dim i As Integer = DataSubscriber2.Value
Label2.Text = Convert.ToString(i, 2).PadLeft(16, "0") '16 bits
End Sub
Private Sub DataSubscriber3_DataChanged(sender As Object, e As Drivers.Common.PlcComEventArgs) Handles DataSubscriber3.DataChanged
Dim i As Integer = DataSubscriber3.Value
Label3.Text = Convert.ToString(i, 2).PadLeft(16, "0") '16 bits
End Sub
Private Sub DataSubscriber4_DataChanged(sender As Object, e As Drivers.Common.PlcComEventArgs) Handles DataSubscriber4.DataChanged
If DataSubscriber4.Value = True Then
     Label1.Visible = True
     Label2.Visible = True
     Label3.Visible = True
     Label4.Visible = True
     Label5.Visible = True
Else
     Label1.Visible = False
     Label2.Visible = False
     Label3.Visible = False
     Label4.Visible = False
     Label5.Visible = False
End If
End Sub

We will now look at the PLC ladder program. The program is broken down into several parts as follows:



ACC Automation Sample PLC Program – Building a PLC Program 6

This is the main start / stop circuit of the program.
If we are in run mode the green light will be on. (MC9)
If we are not in jog mode (MC8) this circuit will be functional.
Cylinder Teach PLC 100-min

If we are not run mode (MC9) or in jog mode (MC8) then the stop mode is active.
This will turn on the red light. (MC10)
Cylinder Teach PLC 110-min

Run / Jog – Toggle Circuit
Flip Flop circuit to set the jog function
Cylinder Teach PLC 120-min

Move the outputs to the physical outputs when we go to run mode.
Cylinder Teach PLC 130-min

Indirect Addresses for the Program
V0 – Input pointer – 100 – 499
V1 – Output pointer – 500 – 999
V2 – Input pointer last step in the sequence
V3 – Output pointer last step in the sequence
V10 – Inputs to the sequencer
V20 – Outputs from the sequencer
Cylinder Teach PLC 140-min

Jog Mode – Jog Pushbutton
Cylinder Teach PLC 150-min

Reset the sequencer pointers. This will happen automatically in run mode or by hitting the reset button in jog or stop mode.
Cylinder Teach PLC 160-min

Teach Function – Building a PLC Program 6

This first rung will activate the values so we can manually turn them off/on with the HMI screen.
Cylinder Teach PLC 170-min

This will reset the pointers when going into teach mode.
Cylinder Teach PLC 180-min

This will set the teach point and increment to the next step.
Cylinder Teach PLC 190-min

Show the current step of the sequence.
Note: 0 is the first step
Cylinder Teach PLC 200-min

Set the inputs for cylinders.
The actual physical input points would be inserted here.
HMI inputs from the cylinders have a 500ms delay to simulate the movement of the actual cylinder.
Cylinder Teach PLC 210-min Cylinder Teach PLC 220-min

Set the actual inputs/sequencer inputs/sequencer outputs so we can monitor this on the HMI.
Cylinder Teach PLC 230-min

Set the outputs for cylinders.
This will set the physical output points Y1 to Y7.
This will also set the HMI cylinders MC1 to MC7 (00001 to 00007)
Cylinder Teach PLC 240-min Cylinder Teach PLC 250-min Cylinder Teach PLC 260-min

Diagnostic Bits for indicating the difference for the inputs to the PLC. This will show up as a red indicator light on the cylinder represented on the HMI.
Cylinder Teach PLC 270-min Cylinder Teach PLC 280-min

This section of PLC logic will mimic the inputs from the cylinders.
Cylinder 1 – Retract MC21 (00021) – Extend MC31 (00031)
Cylinder 2 – Retract MC22 (00022) – Extend MC32 (00032)
Cylinder 3 – Retract MC23 (00023) – Extend MC33 (00033)
Cylinder 4 – Retract MC24 (00024) – Extend MC34 (00034)
Cylinder 5 – Retract MC25 (00025) – Extend MC35 (00035)
Cylinder 6 – Retract MC26 (00026) – Extend MC36 (00036)
Cylinder 7 – Retract MC27 (00027) – Extend MC37 (00037)

Between each function of the cylinder, there is a time delay for the input to turn on and off of 500msec.
Cylinder Teach PLC 290-min

Cylinder 2 – Retract MC22 (00022) – Extend MC32 (00032)
Cylinder Teach PLC 300-min

Cylinder 3 – Retract MC23 (00023) – Extend MC33 (00033)
Cylinder Teach PLC 310-min

Cylinder 4 – Retract MC24 (00024) – Extend MC34 (00034)
Cylinder Teach PLC 320-min

Cylinder 5 – Retract MC25 (00025) – Extend MC35 (00035)
Cylinder Teach PLC 330-min

Cylinder 6 – Retract MC26 (00026) – Extend MC36 (00036)
Cylinder Teach PLC 340-min

Cylinder 7 – Retract MC27 (00027) – Extend MC37 (00037)
Cylinder Teach PLC 350-min

This is the end of the PLC program. You can see that the program is not very complicated once you break down the individual steps.

Download the PLC program and the Bin directory for the AdvancedHMI screen.

Watch on YouTube: Building a PLC Program that You can be Proud Of – Part 6b – Explaining the Program
If you have any questions or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.


Now You Can Have Robust Data Logging for Free – Part 12

Now You Can Have Robust Data Logging for Free – Part 12

HTML and Scripting Languages

 We have the following accomplished:
  • PLC program
  • Visual Basic Program
  • Data collected in a Database
  • IIS web service established
  • ASP Script Written
iis106
Let’s take a closer look at the ASP Script ( AccRL.asp) that was written in part 11:



The <html> is at the start of the file and the </head> is at the end of the file. These tags all have to have a start and end.  The ‘/’ indicates the end of the tag.
The <head> is used to place the information for the web page. The refresh will load the page after 300 seconds (5 minutes). This way the information will always be the latest. The title is used to label the page. This is the information at the top of the browser. The SHORTCUT ICON is used for the icon at the top of the browser near the page address.
<html>

<head>
<meta HTTP-EQUIV=”Refresh” CONTENT=”300″>
<title>ACC Automation – Robust Logger</title>
<LINK REL=”SHORTCUT ICON” HREF=”http://192.168.1.3/ACC_Do.ico”/></head>

ActiveX Data Objects (ADO) is used to access databases from your web pages. ADOVBS.inc is a file that has all of the ADO constants defined.  Be sure to add this file in your root web application directory.
<!– #include virtual=”/adovbs.inc” –>

The <% and %> symbols indicate the start and finish of VBScript in the page. We dimension our variables for StartTime and EndTime. These will be used to determine how long our script took to execute.
<%
Dim StartTime, EndTime
StartTime = Timer

We dimension the variables that are used for the connection to the database file.
Dim OBJdbConnection
Dim rs1
Dim objCmd

We set up the connection to the database and determine what information we need to retrieve.
Set OBJdbConnection = Server.CreateObject(“ADODB.Connection”)

OBJdbConnection.Open “Provider=Microsoft.ACE.OLEDB.12.0;DATA SOURCE=C:\AccRL\data\AccRL.accdb;Persist Security Info=False;”
set rs1 = Server.CreateObject(“ADODB.recordset”)
with rs1
 .CursorType = adOpenForwardOnly
 .LockType = adLockReadOnly
 .CursorLocation = adUseServer
 .ActiveConnection = OBJdbConnection
 .Source = “SELECT * FROM Minute_Log;”
end with

Using getrows will allow us to execute the Select command and retrieve all of the information in one pass from the database.  This is the quickest method to get the information out quickly.
rs1.Open

arraytime = rs1.getrows()
rs1.close

We now write the information from the database to the page.
Response.Write arraytime(0,0) & “<br>”
Response.Write arraytime(1,0) & “<br>”
Response.Write Year(arraytime(1,0))& “/” & Right(“0” & Month(arraytime(1,0)), 2) & “/” & Right(“0” & Day(arraytime(1,0)), 2) & “<br>”
Response.Write arraytime(2,0)& “<br>”
Response.Write arraytime(3,0)& “<br>”
Response.Write arraytime(4,0)& “<br>”

The EndTime is now set and the total time it took for the process is displayed.
EndTime = Timer

Response.write “<p>Processing took “&(EndTime-StartTime)&” seconds<p>&nbsp;”
%>
</body>
</html>

Now that you have information into the database and IIS running, you can display the data in various ways.
Charts:
iis109 display
Graphs:
iis108 display Gauges:
iis107 display
This ends our robust logger design. For the complete PLC program, VB source code and web page file please send me an email and ask for the ACC Robust Logger Program. I will be happy to email you the information.
If you have any questions or need further information, please contact me.
Regards,
Garry

Now You Can Have Robust Data Logging for Free – Part 1
Now You Can Have Robust Data Logging for Free – Part 2
Now You Can Have Robust Data Logging for Free – Part 3
Now You Can Have Robust Data Logging for Free – Part 4
Now You Can Have Robust Data Logging for Free – Part 5
Now You Can Have Robust Data Logging for Free – Part 6
Now You Can Have Robust Data Logging for Free – Part 7
Now You Can Have Robust Data Logging for Free – Part 8
Now You Can Have Robust Data Logging for Free – Part 9
Now You Can Have Robust Data Logging for Free – Part 10
Now You Can Have Robust Data Logging for Free – Part 11
Now You Can Have Robust Data Logging for Free – Part 12




If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.


Now You Can Have Robust Data Logging for Free – Part 11

Now You Can Have Robust Data Logging for Free – Part 11

HTML and Scripting Languages

 We have the following accomplished:
  • PLC program
  • Visual Basic Program
  • Data collected in a Database
  • IIS web service established



The machine that has the IIS web service must have the Microsoft Access Database Engine 2010 installed. This can be obtained by the following link:
You can select the 32 bit or 64-bit version that matches your computer.

Microsoft Access Database Engine 2010 Redistributable
Note:  If you have office installed on your machine already then you probably will already have this file.

ActiveX Data Objects (ADO) is used to access databases from your web pages. ADOVBS.inc is a file that has all of the ADO constants defined.  Be sure to add this file in your root web application directory. How to add this code to a web page is shown in the sample code below.
You can download ADOVBS.inc from this site in text format. (Just rename to ADOVBS.inc from ADOVBS.txt)
ADO Introduction:
http://www.w3schools.com/asp/ado_intro.asp

Lets set up ASP on IIS to display any error messages to our browser.
Call up Control Panel and then go to Administrative Tools. Call up Internet Information Services (IIS) Manager.iis100

From IIS Manager, double click on ASP under IIS. Expand Debugging Properties and change the Send Errors To Browser to True.

iis102

iis103

Let’s also ensure that your browser is set to display the error messages in internet explorer (IE). Call up Internet options from the main settings.

iis104

iis105

Click the setting for ‘Show friendly HTTP error messages’. This will ensure that the error messages show up in your browser.

The last part of our project is to display the database information to the network. We do this by using a webpage. The HTML and VBScript can be writing in any editor. (Like Notepad)

There are also a great number of online editors that you can visually see what your page will look like while developing your code.
To learn more about VBScript following the link below:
Lets take a look at the AccRL.asp file:


<html>
<head>
<meta HTTP-EQUIV=”Refresh” CONTENT=”300″>
<title>ACC Automation – Robust Logger</title>
<LINK REL=”SHORTCUT ICON” HREF=”http://192.168.1.3/ACC_Do.ico”/></head>
<!– #include virtual=”/adovbs.inc” –>
<%
Dim StartTime, EndTime
StartTime = Timer

Dim OBJdbConnection
Dim rs1
Dim objCmd

Set OBJdbConnection = Server.CreateObject(“ADODB.Connection”)
OBJdbConnection.Open “Provider=Microsoft.ACE.OLEDB.12.0;DATA SOURCE=C:\AccRL\data\AccRL.accdb;Persist Security Info=False;”
set rs1 = Server.CreateObject(“ADODB.recordset”)
with rs1
 .CursorType = adOpenForwardOnly
 .LockType = adLockReadOnly
 .CursorLocation = adUseServer
 .ActiveConnection = OBJdbConnection
 .Source = “SELECT * FROM Minute_Log;”
end with

rs1.Open
arraytime = rs1.getrows()
rs1.close

Response.Write arraytime(0,0) & “<br>”
Response.Write arraytime(1,0) & “<br>”
Response.Write Year(arraytime(1,0))& “/” & Right(“0” & Month(arraytime(1,0)), 2) & “/” & Right(“0” & Day(arraytime(1,0)), 2) & “<br>”
Response.Write arraytime(2,0)& “<br>”
Response.Write arraytime(3,0)& “<br>”
Response.Write arraytime(4,0)& “<br>”

EndTime = Timer
Response.write “<p>Processing took “&(EndTime-StartTime)&” seconds<p>&nbsp;”
%>
</body>
</html>

Place this AccRL.asp file into the root directory of our web server. Call up the page though our browser (http:\\localhost\AccRL.asp) and the following output will be seen.
iis106
In part 12 we will break down the ASP code and modify. For the complete PLC program, VB source code and web page file please send me an email and ask for the ACC Robust Logger Program. I will be happy to email you the information.
If you have any questions or need further information, please contact me.
Regards,
Garry

Now You Can Have Robust Data Logging for Free – Part 1
Now You Can Have Robust Data Logging for Free – Part 2
Now You Can Have Robust Data Logging for Free – Part 3
Now You Can Have Robust Data Logging for Free – Part 4
Now You Can Have Robust Data Logging for Free – Part 5
Now You Can Have Robust Data Logging for Free – Part 6
Now You Can Have Robust Data Logging for Free – Part 7
Now You Can Have Robust Data Logging for Free – Part 8
Now You Can Have Robust Data Logging for Free – Part 9
Now You Can Have Robust Data Logging for Free – Part 10
Now You Can Have Robust Data Logging for Free – Part 11




If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.