Category Archives: AdvancedHMI

AdvancedHMI is written in VB.Net and runs on visual studio. This is a free HMI programming software.

BRX PLC AdvancedHMI Communication – Modbus TCP

Advanced HMI is a powerful, adaptable HMI/SCADA (Supervisory Control and Data Acquisition) development package that takes advantage of Visual Studio. There is no coding required and you can simply drag and drop items onto the page. The best thing is that the software is free. We will look at using AdvancedHMI with the BRX Series PLC.

Our sample BRX PLC program will display a digital panel meter and a gauge of a value in the PLC. Stop and start momentary pushbuttons on the HMI will allow this number to increase or stop. An indication will turn green when the number is increasing and red when it has stopped. The AdvancedHMI package will communicate Modbus TCP over Ethernet to the BRX PLC. We will be able to monitor our process via the AdvancedHMI window. Lets get started. Watch on YouTube…
Continue Reading!

ACC Automation 2017 Review

ACC Automation


We would like to take a few minutes and reflect on the past, current and future of ACC Automation. 2017 has been our best year yet thanks to you. Your questions, comments and suggestions have helped us to build the site that you see today.
Thank you. Continue Reading!

Omron CP1H AdvancedHMI Communication

Advanced HMI is a powerful, adaptable HMI/SCADA (Supervisory Control and Data Acquisition) development package that takes advantage of Visual Studio. There is no coding required and you can simply drag and drop items onto the page. The best thing is that the software is free. We will look at using AdvancedHMI with the Omron CP1H PLC.
Our sample CP1H PLC program will use button and indicators to control a start/stop jog circuit. An analog input into the PLC will be scaled and displayed on a gauge on our AdvancedHMI screen. We will also write information to our 7 segment display on the CPU from our AdvancedHMI screen. This communication will be done using Omron serial host link protocol over a RS485 serial cable. The AdvancedHMI package will run on a windows PC and communicate out the port using a USB to RS485 adapter. Let’s get started. Continue Reading!

Horner XL4 Modbus TCP AdvancedHMI Communication

Advanced HMI is a powerful, adaptable HMI/SCADA (Supervisory Control and Data Acquisition) development package that takes advantage of Visual Studio. There is no coding required and you can simply drag and drop items onto the page. The best thing is that the software is free. We will look at using AdvancedHMI with the Horner APG XL4 Controller. Using the program on the process tank application we created previously, we will be controlling and displaying information to the network. The AdvancedHMI package will communicate Modbus TCP over Ethernet to the PLC. We will be able to start and stop our process tank and monitor the parameters via the AdvancedHMI window. Continue Reading!

ACC Automation 2016 Review

Acc Automation

We would like to take a few minutes and reflect on the past, current and future of ACC Automation. You have help us succeed in our best year yet.

Starting off we learned how to:
Create a PLC with HMI Training and Learning Environment Free – Utilized the Do-More Designer Software and the AdvancedHMI Software we communicated Modbus TCP to the Do-More simulator. This was all done on one computer without any need for additional hardware. The best thing about this was that the investment was only time learning the packages. Continue Reading!

Click PLC AdvancedHMI Communication

Advanced HMI is a powerful, adaptable HMI/SCADA (Supervisory Control and Data Acquisition) development package that takes advantage of Visual Studio. There is no coding required and you can simply drag and drop items onto the page. The best thing is that the software is free. We will look at using AdvancedHMI with the Click PLC. Our sample Click PLC program will read the present value (PV) and the indicating lights on our Solo Process Temperature Controller. It will then write the set value (SV) to the Solo. This communication will be done using Modbus RTU protocol over a RS485 serial port on the Click. The AdvancedHMI package will communicate Modbus TCP over Ethernet to the Click PLC. We will be able to monitor our PV and set our SV on the Solo via the AdvancedHMI window.  Keep on Reading!

Deploying an AdvancedHMI Project

Deploying an AdvancedHMI project on the industrial floor sounds like an easy task, but there are a few things that you should consider. The HMI (Human Machine Interface) user interface will run on a computer. The industrial environment is one in which temperature, dust, electrical noise, etc. are always present. This can also be combined with workers wanting to play with the new computer. We will look briefly at the hardware and software items that will make your install more reliable and user friendly in the field.
cloud-37011_640-min

Hardware
The hardware that you deploy in the field should match the environment that you expect it to work in. Computers come in many shapes, sizes and price points. Here are a few items that you may want to consider.
thermometer-934646_640-min

  • Fanless Computer – This will keep the dust out but temperature may be a problem.
  • Monitor – Location and type – Do you need touch screen?
    Keyboard and mouse – Washable?
  • Enclosures – If you are in a wash down environment then an enclosure is a necessity. Sometimes these enclosures are worth more than the contents in them.
  • UPS – The uninterruptable power supply will usually serve two purposes. It will act when power is removed so the computer will be able to shutdown correctly. The UPS will usually also act as a power conditioner. Most power has surges on the line and this can be amplified when in the industrial environment. The surge suppressors in the UPS will protect the computer.
  • Program backup – Have multiple copies of the software saved in different places. You never know when the unexpected will happen. (Fire / Thief etc.) This includes the backup disks for your operating system as well as the programs (versions) that you are running on the computer. (AdvancedHMI, Visual Studio)
  • Documentation of the backup (Hardware / Software) – Ensure that you have documentation of the hardware and software versions that you are using. I would also include where everything was purchased. This way if records are missing we can track this down through the supplier.

Software
The software that we have on the production floor should be robust. This means that we should know what happens if thing go wrong. Backups as mentioned above should happen on a regular basis. Memory is inexpensive so backup your files regularly. We usually use a networked computer to automatically back up the production files each day. The following is a list of items that you should pay attention to when deploying a computer on the production environment.

  • Turn off windows update – Windows is great at keeping itself up to date. However this can cause programs to stop working. When dealing with an AdvancedHMI deployment we set windows to ‘Download updates but let me choose whether to install them’. It can take several minutes for windows to update. You want to be sure that the machine being controlled will not be affected.
    AdvancedHMI Deployment 010-min
  • Security – Set permissions – When setting up your windows computer for the factory floor, do not give the account that boots up and logs on automatically Administrator Privileges. It should be set up as a Standard User. This will prevent unauthorized software being loaded onto the system.
    Internet Explorer comes standard on any new computer with windows 8.1 or older. No other browser is present out of the box. It is good to set a supervisor password on the internet connection. This will allow you to restrict the internet use.
    http://www.thewindowsclub.com/password-protect-the-use-of-internet-explorer
    On the run prompt type: RunDll32.exe msrating.dll,RatingSetupUI
    Goto the General tab to select a supervisor password
    AdvancedHMI Deployment 020-min AdvancedHMI Deployment 025-min
  • AdvancedHMI – There are a few thing that we can do in the AdvancedHMI project. We will look at the AdvancedHMI project that we did for Creating a HMI Login Screen on AdvancedHMI.
    AdvancedHMI Deployment 060-min
    o ControlBox – Remove the ControlBox on the main screen form. This will ensure that the user cannot minimize, maximize or close the application.
    AdvancedHMI Deployment 030-min
    o Maximize for screen size – Make the main screen form maximized so it will fill the entire screen.
    AdvancedHMI Deployment 040-min
    o Form.TopMost = True – This command will ensure that your application will be on top of all other windows forms.
    AdvancedHMI Deployment 050-min
    In this example the calculator has focus, but the our windows form will always be on top.
    AdvancedHMI Deployment 055-min
    If you have only one form then you can use the Properties settings for the form you always want on top. Multiple pages will have to include some additional programming to ensure that they are on top and visible.
    Here is the code for the returning to the main form of the program.
Private Sub ReturnToMainButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles btnCancel.Click
    Me.TopMost = False
   MainForm.Show()
    MainForm.TopMost = True
    Me.Hide()
End Sub
  • Shortcut on the desktop – Place a shortcut to the AdvancedHMI application on the desktop. This will allow someone to quickly start the application if the application unexpectedly closes.

Following the above recommendations will ensure that your computer will perform and last as expected on the factory floor. Your AdvancedHMI project will work reliable and efficiently.

If you would like a copy of the PLC and AdvancedHMI programs, please contact me and I would be happy to send them to you.

Watch on YouTube : Deploying an AdvancedHMI Project
If you have any questions or need further information please contact me.
Thank you,
Garry

Archie Jacobs from Manufacturing Automation, LLC  has another tip for disabling the windows error recovery on startup.
On the PC that will run AdvancedHMI, click the start button and type CMD to find the Command Prompt. Right Click on the command prompt and select Run As Administrator
Once the Command Prompt opens, type the following:
bcdedit /set {current} bootstatuspolicy ignoreallfailures
This will prevent problematic startup when the PC is not shut down properly as often happens in the industrial environment.




If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.




AdvancedHMI to Solo Process Temperature Controller

Modbus RTU will be the serial (RS485) method in which we will communicate between the AdvancedHMI Screen and the Automation Direct Solo Process Temperature Controller.
We can address up to 247 (Solo 1 to 247) devices on this master – slave protocol. A maximum of 32 devices (Nodes) on the network can communicate to the master. A review of the Modbus RTU protocol can be seen at the following URL.
http://www.rtaautomation.com/technologies/modbus-rtu/

AdvancedHMI is a free HMI programming package the runs on Microsoft Visual Studio. It can be downloaded at the following URL.
https://sourceforge.net/projects/advancedhmi/

Connections:
We will be running the AdvancedHMI software on the computer. One of the USB ports will have an USB to RS485 adapter and communicate RS485 to the Solo process temperature controller.
Solo Process Temp Controller 010 Communication Diagram-min
See the following post to install the USB to RS485 adapter.
https://accautomation.ca/usb-to-rs485-pc-adapter-installation/

Solo Controller Settings:
In the Initial Setting Mode we will change the on line configuration to on and make the changes to the Modbus settings as follows: 9600 Baud, Even, 7 Data Bits, 1 Stop Bit, Modbus ASCII Format. We will leave the default unit number as 1. See the following post to set the controller:
https://accautomation.ca/solo-process-temperature-controller/

Modbus RTU (Addresses)
The following address will be used in our project:
AdvancedHMI to Solo 050-min

AdvancedHMI to Solo 055-min
AdvancedHMI will use the Modbus Decimal value in the PLCAddressValue to determine the information that you want to get. For a list of all Modbus addresses that can be used in your project, refer to the Solo Manual located a the following URL:
https://www.automationdirect.com/adc/Manuals/Catalog/Process_Control_-a-_Measurement/Temperature_-z-_Process_Controllers

Screen Display: (AdvancedHMI)
Here is what our screen will look like:
AdvancedHMI to Solo 010-min
We have mimicked the look of the solo process temperature controller. Our PV and SV values are DigitalPanelMeters from the AdvancedHMI toolbar.  The eight output indicators are just labels.

Our ModbusRTUCom1 settings are as follows:
AdvancedHMI to Solo 030-min
Settings: 9600, 8, Even, One StopBit and Station 1 should all match the settings in the Solo process temperature controller that we did previously.
PollRateOverride will allow us to determine how often the communication will take place to the controller. (250msec)
The PortName will be the same port number that the computer will communicate out of. This will be set when you install the USB to RS485 adapter. It may change if a different USB port is used.

The DataSubsciber1 will be used to determine the status of the controller.
AdvancedHMI to Solo 040-min
PLCAddressValue = 44139

We read the value of the eight status bits and convert this into a string so we can determine the status of each of the individual bits. Here is the code that is used to do this. It is the only code required for this application.

Private Sub DataSubscriber1_DataChanged(sender As Object, e AsDrivers.Common.PlcComEventArgs) Handles DataSubscriber1.DataChanged
        Dim i As Integer = DataSubscriber1.Value
        Dim Status As String
        Status = Convert.ToString(i, 2).PadLeft(8, "0") '8 bits
        'There are 8 bits that we need to check and account for on our screen. 
        'Modbus Decimal - 44139
        'Bit 0 - ALM3 - Alarm 3
        'Bit 1 - ALM2 - Alarm 2
        'Bit 2 - C degrees
        'Bit 3 - F degrees
        'Bit 4 - ALM1 - Alarm 1
        'Bit 5 - OUT 2 
        'Bit 6 - OUT 1
        'Bit 7 - AT - Auto Tuning

The complete AdvancedHMI code for this application can be downloaded at the end of the post.

The PV and SV indicators are DigitalPanelMeters as mentioned above.
AdvancedHMI to Solo 060-min

AdvancedHMI to Solo 065-min
They both have four digits with a decimal position of 1. This will give us a value between 000.0 and 999.9.
The SV includes a keypad to change the set value. KeypadScaleFactor is set to 0.1 to allow for the decimal place.

Included in our display is a BasicTrendChart from the AdvancedHMI toolbar.
AdvancedHMI to Solo 075-min

AdvancedHMI to Solo 070-min
You want to make sure that the YMaximum and YMinimum settings are set so the values will not go past these settings. If they do then the graph line will disappear from the chart at that point and time.
This will show a running trend for the last 5 minutes.
Polling rate is 250msec x 1200 points in the chart = 300 000msec
300 000msec / 1000 = 300 seconds
300 seconds / 60 (seconds in minute) = 5 minutes

Notes: Displaying Extended ASCII Symbols in Visual Studio (VB.NET)
You can display any symbol in the visual studio environment by holding the ‘Alt’ key down and typing the decimal number of the symbol that you want. In our example the degrees symbol is Alt 248.
Here are the extended ASCII symbols:
AdvancedHMI to Solo 020-min
http://www.asciitable.com/

Running the Application:
AdvancedHMI to Solo 085-min

You will notice that the response rate is very quick. (250msec) As the PV, SV or indication values change, the screen will get updated.AdvancedHMI to Solo 090-min

The trend chart will show the last 5 minutes of the PV value. AdvancedHMI to Solo 095-min

As you can see, programming the AdvancedHMI to communicate to the Solo process temperature controller is very easily done.

Download the AdvancedHMI code for this project here.

Watch on YouTube : AdvancedHMI to Solo Process Temperature Controller
If you have any questions or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.




Building a PLC Program That You Can Be Proud Of – Part 6

We will continue the series by looking at a sequencer controlling seven cylinders that can be taught. The cylinders can be operator programmed from the AdvancedHMI screen. You will be able to select what cylinders to activate at each step and program in 500 steps. Our PLC will be the Do-More from Automation Direct.
Cylinder Teach HMI 110-min

Here is a quick review of the programming series so far. If you are new to the site, we recommend reviewing the other parts in the series first.
In part 1 we looked at writing PLC programs to control a traffic light using discrete bits and then using timed sequencing using indirect addressing.
Part 2 used indirect addressing for inputs as well as output to control the sequence of pneumatic (air) cylinders in the program. Part 3 and 4 we returned to the traffic light application and expand our program significantly. We looked at the sequence of operation using Input, output and mask tables.
In part 5 we used the AdvancedHMI software to create the game of Simon. A round in the game consists of the device lighting up one or more buttons in a random order, after which the player must reproduce that order by pressing the buttons. As the game progresses, the number of buttons to be pressed increases.

We will be using AdvancedHMI to communicate Modbus TCP to the Automation Direct Do-More Designer Software Simulator. The following is the sequence of operation:
Watch on YouTube : Running the Cylinder Sequence (PLC / HMI)
Note: All of the  programs used are provided free of charge and are an excellent way to learn PLC / HMI programming.

The following table is the Modbus TCP memory map to the Do-More PLC:

Coil/Register Numbers Data Addresses Type Do-More PLC Table Name
00001-09999 0000 to 270E Read-Write MC1 to MC1023 Discrete Output Coils
10001-19999 0000 to 270E Read-Only MI1 to MI1023 Discrete Input Contacts
30001-39999 0000 to 270E Read-Only MIR1 to MIR2047 Analog Input Registers
40001-49999 0000 to 270E Read-Write MHR1 to MHR2047 Analog Output Holding Registers

Cylinder Teach HMI 100-min
Here are the inputs and outputs we will be using for our program:

Device Data Addresses Type Do-More PLC Description
Start Pushbutton 00011 Input MC11
Stop Pushbutton 00012 Input MC12
Jog Pushbutton 00013 Input MC13
Reset Pushbutton 00014 Input MC14
Run/ Jog Selector 00008 / 00015 Input/ Output MC8 / MC15  MC8 is the value and MC15 is the click
Light Stack 00010 / 00009 / 00008 Output MC10 / MC9 / MC8  Red / Green / Amber
Set Pushbutton 00071 Input MC71
Jog / Teach Selector 00070 Input MC70  MC70 on is teach mode
Sequence Step (Panel Meter) 40001 Output MHR1  Current step in the sequence
Inputs Actual 40002 Input MHR2  Show the actual inputs in binary format
Output Sequence 40003 Output MHR3  Show the actual outputs in a binary format
Input Sequence 40004 Input MHR4  Show the input sequence bits in a binary format
Cylinder 1 to 7 – value 00001 to 00007 Output MC1 to MC7  Determine if cylinder is on/off
Cylinder 1 to 7 – set (click) 00041 to 00047 Input MC41 to MC47  Set the cylinder button
Cylinder 1 to 7 – retract indicators 00021 to 00027 Input MC21 to MC27 Indicate cylinder has retracted
Cylinder 1 to 7 – extend indicators 00031 to 00037 Input MC31 to MC37 Indicate cylinder has extended
Cylinder 1 to 7 – extend / retract error indicators 00050 to 00063 Output MC50 to MC63 Indicate cylinder input error when jogging

The first thing we will do is design the HMI. We have three main areas on the screen. Basic Controls, Cylinder Visualization and the Sequence Step/Teach area. Please refer to the above reference chart for the inputs and outputs programmed on the screen.
Cylinder Teach HMI 130-min

Basic Controls:
This area will allow us to see what mode we are in via the stack light. Red – Stop
Yellow – Jog / Teach Mode – Troubleshooting
Green – Run
Cylinder Teach HMI 101-min

Cylinder Visualization:
Each cylinder will have indication lights to determine status of the cylinder. (Extended / Retracted)
The cylinder will also have red indication lights to reflect the differences between the current sequence and the next sequence step. This is visible when we are in jog mode.
Cylinder Teach HMI 102-min

Sequence Step/Teach:
When in jog or teach mode the sequence step is visible, which indicates the current step that we are on. The inputs and outputs are displayed as a binary value which represents the actual inputs and outputs. This is valuable when troubleshooting and finding errors in the system. The set button is visible when in teach mode. When pushed the outputs and inputs are set for that step and the sequence will then increment.
Cylinder Teach HMI 103-min

The following is the code for each of the words that the DataScribers are reading. This includes the code to change the word into a 16 bit binary value.

Private Sub DataSubscriber1_DataChanged(sender As Object, e As Drivers.Common.PlcComEventArgs) Handles DataSubscriber1.DataChanged
'Label1.Text = Hex(DataSubscriber1.Value)Dim i As Integer = DataSubscriber1.Value
Label1.Text = Convert.ToString(i, 2).PadLeft(16, "0") '16 bits
End Sub
Private Sub DataSubscriber2_DataChanged(sender As Object, e As Drivers.Common.PlcComEventArgs) Handles DataSubscriber2.DataChanged
'Label2.Text = Hex(DataSubscriber2.Value)
Dim i As Integer = DataSubscriber2.Value
Label2.Text = Convert.ToString(i, 2).PadLeft(16, "0") '16 bits
End Sub
Private Sub DataSubscriber3_DataChanged(sender As Object, e As Drivers.Common.PlcComEventArgs) Handles DataSubscriber3.DataChanged
Dim i As Integer = DataSubscriber3.Value
Label3.Text = Convert.ToString(i, 2).PadLeft(16, "0") '16 bits
End Sub
Private Sub DataSubscriber4_DataChanged(sender As Object, e As Drivers.Common.PlcComEventArgs) Handles DataSubscriber4.DataChanged
If DataSubscriber4.Value = True Then
     Label1.Visible = True
     Label2.Visible = True
     Label3.Visible = True
     Label4.Visible = True
     Label5.Visible = True
Else
     Label1.Visible = False
     Label2.Visible = False
     Label3.Visible = False
     Label4.Visible = False
     Label5.Visible = False
End If
End Sub

We will now look at the PLC ladder program. The program is broken down into several parts as follows:

ACC Automation
This is the main start / stop circuit of the program.
If we are in run mode the green light will be on. (MC9)
If we are not in jog mode (MC8) this circuit will be functional.
Cylinder Teach PLC 100-min

If we are not run mode (MC9) or in jog mode (MC8) then the stop mode is active.
This will turn on the red light. (MC10)
Cylinder Teach PLC 110-min

Run / Jog – Toggle Circuit
Flip Flop circuit to set the jog function
Cylinder Teach PLC 120-min

Move the outputs to the physical outputs when we go to run mode.
Cylinder Teach PLC 130-min

Indirect Addresses for the Program
V0 – Input pointer – 100 – 499
V1 – Output pointer – 500 – 999
V2 – Input pointer last step in sequence
V3 – Output pointer last step in sequence
V10 – Inputs to the sequencer
V20 – Outputs from the sequencer
Cylinder Teach PLC 140-min

Jog Mode – Jog Pushbutton
Cylinder Teach PLC 150-min

Reset the sequencer pointers. This will happen automatically in run mode or by hitting the reset button in jog or stop mode.
Cylinder Teach PLC 160-min

Teach Function
This first rung will activate the values so we can manually turn them off/on with the HMI screen.
Cylinder Teach PLC 170-min

This will reset the pointers when going into teach mode.
Cylinder Teach PLC 180-min

This will set the teach point and increment to the next step.
Cylinder Teach PLC 190-min

Show the current step of the sequence.
Note: 0 is the first step
Cylinder Teach PLC 200-min

Set the inputs for cylinders.
The actural physical input points would be inserted here.
HMI inputs from the cylinders have a 500ms delay to simulate the movement of the actual cylinder.
Cylinder Teach PLC 210-min Cylinder Teach PLC 220-min

Set the actual inputs / sequencer inputs / sequencer outputs so we can monitor this on the HMI.
Cylinder Teach PLC 230-min

Set the outputs for cylinders.
This will set the physical output points Y1 to Y7.
This will also set the HMI cylinders MC1 to MC7 (00001 to 00007)
Cylinder Teach PLC 240-min Cylinder Teach PLC 250-min Cylinder Teach PLC 260-min

Diagnostic Bits for indicating the difference for the inputs to the PLC. This will show up as a red indication light on the cyclinder represented on the HMI.
Cylinder Teach PLC 270-min Cylinder Teach PLC 280-min

This section of PLC logic will mimic the inputs from the cylinders.
Cylinder 1 – Retract MC21 (00021) – Extend MC31 (00031)
Cylinder 2 – Retract MC22 (00022) – Extend MC32 (00032)
Cylinder 3 – Retract MC23 (00023) – Extend MC33 (00033)
Cylinder 4 – Retract MC24 (00024) – Extend MC34 (00034)
Cylinder 5 – Retract MC25 (00025) – Extend MC35 (00035)
Cylinder 6 – Retract MC26 (00026) – Extend MC36 (00036)
Cylinder 7 – Retract MC27 (00027) – Extend MC37 (00037)

Between each funtion of the cylinder there is a time delay for the input to turn on and off of 500msec.
Cylinder Teach PLC 290-min

Cylinder 2 – Retract MC22 (00022) – Extend MC32 (00032)
Cylinder Teach PLC 300-min

Cylinder 3 – Retract MC23 (00023) – Extend MC33 (00033)
Cylinder Teach PLC 310-min

Cylinder 4 – Retract MC24 (00024) – Extend MC34 (00034)
Cylinder Teach PLC 320-min

Cylinder 5 – Retract MC25 (00025) – Extend MC35 (00035)
Cylinder Teach PLC 330-min

Cylinder 6 – Retract MC26 (00026) – Extend MC36 (00036)
Cylinder Teach PLC 340-min

Cylinder 7 – Retract MC27 (00027) – Extend MC37 (00037)
Cylinder Teach PLC 350-min

This is the end of the PLC program. You can see that the program is not very complicated once you break down the individual steps.

Download the PLC program and the Bin directory for the AdvancedHMI screen.

Watch on YouTube : Building a PLC Program that You can be Proud Of – Part 6b – Explaining the Program
If you have any questions or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.