Tag Archives: software

PLC Programming Example – Palletizer

We will apply the five steps to PLC program development to a palletizer example. Our example will allow you to determine how many layers of boxes you want on each skid.

Developing the PLC program is a process that can be clearly defined. In our series on the five steps to PLC program development we have done some similar practical examples.
PLC Programming Examples – Five Steps to PLC Program Development
– Press
Process Mixer
Shift Register (Conveyor Reject)
Paint Spraying
Delay Starting of 7 Motors
– Pick and Place
– Sorting Station (Shift Register)

Define the task: (1)
Watch the sequence of operation video below. This will demonstrate the pallet layer selection, running and resetting of the machine.
Watch on YouTube : PLC Programming Example – Palletizer Testing
Continue Reading!

PLC Programming Example – Sorting Station (Shift Register)

We will apply the five steps to PLC program development to a sorting station example. The program will use shift registers to track coloured parts down a conveyor and sort depending on colour into one of three locations.

Developing the PLC program is a process that can be clearly defined. In our series on the five steps to PLC program development we have done some similar practical examples.
Five Steps to PLC Program Development
– Press
Process Mixer
Shift Register (Conveyor Reject)
Paint Spraying
Delay Starting of 7 Motors
– Pick and Place

Define the task: (1)
Watch the sequence of operation video below.
Watch on YouTube : PLC Programming Example – Sorting Station Testing
Continue Reading!

PLC Programming Example – Pick and Place

We will apply the five steps to PLC program development to a pick and place robot example. The example will use a BRX PLC communicating to Factory IO (3D Software Simulator). Developing the PLC program is a process that can be clearly defined. In our series on the five steps to PLC program development we have done some similar practical examples.
Five Steps to PLC Program Development – Press
PLC Programming Examples:
Process Mixer
Shift Register (Conveyor Reject)
Paint Spraying
Delay Starting of 7 Motors

Define the task: (1)
Watch the sequence of operation video below.
Watch on YouTube : PLC Programming Example – Pick and Place Testing
Continue Reading!

Understanding the PLC Program Scan

Understanding how the PLC will scan and update your program is critical in programming and troubleshooting your system. Typically a PLC will solve your logic from left to right, top to bottom. The status of the memory from the previous rung, are available for the next rung to use. We will look at a few examples to determine how the PLC will solve logic to illustrate the above program scanning.  Keep on Reading!

PLC Programming Example – Delay Starting of 7 Motors

We will look at a PLC programming example of delaying the start of 7 motors. Each motor will be on a switch that the operator can select at any time. The motor outputs should have a 5 second delay between the outputs coming on.

This question originally came from PLCTalk.net. An original solution to the problem came from Peter Steinhoff. His solution is what we will be presenting. It is simple and straight forward.

We will be using the Do-more Designer software which comes with a simulator. This fully functional program is offered free of charge at automation directKeep on Reading!

Create a PLC with HMI Training and Learning Environment Free

Learn PLC programming and use a powerful HMI (Human Machine Interface) easily and free. We will use the Automation Direct Do-More programming software tied into the Advanced HMI package via Modbus TCP.
PLC HMI Training Learning 0080-min

Our application will show a HMI screen with a panel meter and a reset button. The panel meter value may be changed by clicking it. This will bring up a input screen to put in a number. When the reset button is selected the input value entered will show on the panel meter.
PLC HMI Training Learning 0310-min

Since we will be communicating via Modbus TCP, the following table shows the Coil/Register Numbers and the associated Do-More PLC Addresses.

Coil/Register Numbers Data Addresses Type Do-More PLC Table Name
00001-09999 0000 to 270E Read-Write MC1 to MC1023 Discrete Output Coils
10001-19999 0000 to 270E Read-Only MI1 to MI1023 Discrete Input Contacts
30001-39999 0000 to 270E Read-Only MIR1 to MIR2047 Analog Input Registers
40001-49999 0000 to 270E Read-Write MHR1 to MHR2047 Analog Output Holding Registers

Note: The Do More PLC uses the Modbus area to communicate. This is because having direct access to the digital I/O can be dangerous when connected via Ethernet to the internet. Data must move in and out of this area via the PLC program.

We will first start with the PLC.
Automation Direct has a powerful simulator with their Do-More PLC. It is the Do-More Designer Software. This software simulator includes the entire instruction set (Not Just Bit Logic) as well as communication protocols. It can be downloaded and installed for free from the above link.
Our PLC program will have the following addresses:
Digital Panel Meter Present Value (PV) – MHR1 – Modbus 40001
Digital Panel Meter Set Value (SV) – MHR2 – Modbus 40002
Reset Button – MC1 – Modbus 00001

The first rung of the ladder will use the 1 second pulse bit and increment the PV value of our digital panel meter. This will also compare the current value to 4000 and if greater or equal, move the value of zero into the PV value.

The second rung of the ladder will move WX0 analog value from our simulator into the PV value of our digital panel meter.

The last rung of ladder will move the SV value into the PV value of our Digital Panel Meter. This happens when the reset is hit.

PLC HMI Training Learning 0200-min

The simulator is showing X0 on and we can then use the WX0 slider to change the PV value of the Panel Meter.
PLC HMI Training Learning 0210-min

Advanced HMI is a powerful HMI/SCADA (Supervisory Control and Data Acquisition) development package that takes advantage of Visual Studio. There is no coding required and you can simply drag and drop items onto the page. The best thing is that the software is free.

Communications drivers include the following and are accessible via VB or C# code:

  • Allen Bradley DF1 RS232 Driver
  • Allen Bradley Ethernet/IP Driver for SLC,MicroLogix, ControlLogix, and CompactLogix
  • Beckhof TwinCAT Driver
  • ModbusTCP Driver
  • ModbusRTU Driver
  • Omron Ethernet FINS Driver – Ethernet for newer controllers such as CP1H with Ethernet module
  • Omron Serial FINS Driver – Serial (RS232 / RS485) for newer controller such as CP1H
  • Omron Serial HostLink Driver – Serial (RS232 / RS485) for controllers such as CQM1, C200H, K-Series (C28K), C200, etc

The power of Advanced HMI is that it works within Visual Studio. This is a program integrated development environment (IDE) that you can take advantage of to modify or create new features including data logging applications.

Advanced HMI runs on Visual Studio 2008 or higher and will need to be installed on your PC. Visual Studio Community Edition 2015 is the latest version of the software. If you do not have it installed, please download and install from the following link.

https://www.visualstudio.com/en-us/products/visual-studio-community-vsPLC HMI Training Learning 0090-min

We will now need the Advanced HMI project. Here is the link to download the zip file.

http://sourceforge.net/projects/advancedhmi/PLC HMI Training Learning 0095-min

After downloading ‘AdvancedHMIBetaV399a.zip’ extract the files from the zip file. (Right Click.. Select Extract All)
Note: Your version might be different than the one above.

Open the solution file (AdvancedHMIv35.sln) from the extracted files in the root directory.
PLC HMI Training Learning 0097-min

PLC HMI Training Learning 0100-min

Our initial screen looks like the following. The project will now need to be compiled in order to add the components to the Toolbox.
Select Build | Build Solution from the menu
The next thing to do is add the communication to the form. On the left hand side of the screen you will see the ‘Toolbox’. Click on it and under AdvancedHMIDrivers Components we will select ModbusTCPCom. To actually add a component to our form you need to drag it. Select the component and as you hold the mouse button down move to the form.PLC HMI Training Learning 0120-min

After adding the ModbusTCPCom component, it will appear at the bottom, beneath our form.
Click on the ModbusTCPCom1 at the bottom of our form. On the right hand side you will notice the properties for this communication driver. Under Communication Settings | IP Address, enter the value  of the IP Address for the PLC. (192.168.1.3) Ensure that the port number is 502. This is the default port number for Modbus TCP.PLC HMI Training Learning 0130-min

We can now add the digital panel meter. From the toolbox select and drag the DigitalPanelMeter to our form.PLC HMI Training Learning 0140-min

Resize the panel meter on the form by dragging a corner of the component.
While the panel meter is clicked, set the Properties | PLC Properties of the component:
PLCAddressValue – 40001 – MHR1 – Value to display on the meter.
PLCAddressKeypad – 40002 – MHR2 – This is the location of the stored number when the operator selects the meter and enters a number in the keypad.PLC HMI Training Learning 0150-min

Add a MomentaryButton to our form by selecting and dragging it from the toolbox.PLC HMI Training Learning 0160-min

After re-sizing the component, we can change the colour to blue under Properties | Misc. Also change the text on the button to ‘RESET’
Set the PLCAddressClick value to 00001. This is address MC1 in the Do-More PLC.PLC HMI Training Learning 0170-min

Run the application by selecting the ‘Start’ form the top menu. This also can be started by hitting ‘F5’. The form will then show in a separate window and the panel meter will be incrementing the value. Hitting the reset button will reset the value to the one entered when you click the panel meter.PLC HMI Training Learning 0310-min

When you hit the panel meter on the display a keypad will then pop up on your screen. Enter the new value and then select ‘Enter’. The new value will appear in MHR2 in the Do-More PLC.
PLC HMI Training Learning 0320-min

Watch on YouTube : Create a PLC with HMI Training and Learning Environment Free
If you have any questions or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.




PLC Programming Example – Process Mixer

We will apply the five steps to PLC Program development to our next programming example of a process mixer.

1 – Define the task:

PLC Prgramming Example - Process Mixer
A normally open start and normally closed stop pushbuttons are used to start and stop the process. When the start button is pressed, solenoid A engergizes to start filling the tank. As the tank fills, the empty level sensor switch closes. When the tank is full, the full level sensor switch closes. Solenoid A is de-energized. Mixer motor starts and runs for 3 minutes to mix the liquid.  When the agitate motor stops, solenoid B is engergized to empty the tank. When the tank is completely empty, the empty sensor switch opens to de-engergize solenoid B. The start button is pressed to repeat the sequence.

2 – Define the Inputs and Outputs:

Inputs:
Start Pushbutton – Normally Open – On/Off
Stop Pushbutton – Normally Closed – On/Off
Empty Sensor Switch – On/Off
Full Sensor Switch – On/Off
Timer 3 minutes done bit – On/Off (Internal)

Outputs:
Mixer Motor – On/Off
Solenoid A – Fill – On/Off
Solenoid B – Empty – On/Off
Timer 3 minutes – (Internal)

3 – Develop a logical sequence of operation:

A flow chart or sequence table is used to fully understand the process.  It will also prompt questions like the following.

What happens when electrical power and/or pneumatic air is lost? What happens when the input / output devices fail? Do we need redundancy?

This is the step where you can save yourself allot of work by understanding everything about the operation. It will help prevent you from continuously re-writing the PLC logic. Knowing all of these answers upfront is vital in the development of the PLC program.

Process Mixer - Sequence Table

4 – Develop the PLC program

Since we need to continue the sequence when the power goes off then memory retentive locations in the PLC must be used. In our example we will use the ‘V Memory’ locations.

The first thing in our program is to control the start and stop functions. This is done through a latching circuit. From the sequence table we know that to reset the sequence we need to have the timer done and the empty sensor off.Process Mixer Program 1

The filling of the tank is done through Solenoid A. It is turned on by the start signal and off by the full sensor switch. (Sequence Table) You will notice that we have a memory retentive output and the actual output to active the solenoid.Process Mixer Program 2

The memory retentive timer will start timing when we have the start sequence signal and when the empty and fill sensors are on. The timer will reset when the empty and fill sensors are off. Mixing motor will be on when the timer is timing and when the timer is not done.Process Mixer Program 3

Solenoid B turns on to empty the tank when the timer is done and the full and empty sensors are on. It will reset when the empty sensor switch goes off.Process Mixer Program 4

5- Test the program

PLC Programming Example - Process Mixer

Test the program under many conditions. Check to see what happens when power is removed.

Using this five step to program development technique will shorten your programming time. The result will be a better defined logic and easier to understand program, because it has within the documentation the logic flow chart or sequence table.

Watch on YouTube : PLC Programming Example – Process Mixer

Factory IO provides a 3D simulation of the process. Testing of the program is important and should be done in a variety of ways. Factory IO provides a straight forward method of seeing your program in action before you wire your application.

We will be using the BRX PLC Modbus TCP Server (Slave). Factory IO will be the Modbus TCP Client (Master). When the tank fills up we will start a dwell time instead of the mixer time for the simulation.
Here is the mapping of the inputs and outputs using Factory IO.

Factory IO Website is at the following URL:
https://factoryio.com/
Documentation is well done. Start at the ‘Getting Started’ at the following URL:
https://factoryio.com/docs/

You can download the PLC program and Factory IO scene here.

Watch the following video to see this simulation in action.

Watch on YouTube : Process Mixer Test Simulation
If you have any questions or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.




How you can learn PLC Programming without spending a dime!

I have been writing PLC programs for over 20 years. I often get asked what is the best way to lean PLC programming. Programming in the way I was taught in college was with the Motorola 6809. (Yes, I know that I am dating myself) This was microprocessor programming, but it was the best way to sometimes explain the methods behind PLC programming. Manufacturers of PLCs had allot of proprietary software that were not even related in their appearance and methods of programming. Today we have a few standards that have changed the look and feel of the programming software packages so each manufacturer is similar. The following is the best recommendation that I have for beginners to start to learn PLC programming today.

start stop 003

The first place to start in order to learn PLC programming is the free publication by Kevin Collins. This PDF will teach you PLC programming without just telling you what a PLC is and how it functions. He also includes some test questions along the way in order for you to retain and understand the important points that he is making.

PLC Programming for Industrial Automation
by Kevin Collins
(Note: This book is now for sale on Amazon.)

Topics covered include:

  • PLC Basics
  • Ladder Programming
  • Conditional Logic
  • Ladder Diagrams
  • Normally closed contacts
  • Outputs and latches
  • Internal relays
  • Timers
  • The Pulse Generator
  • Counters
  • Sequential Programming Introduction
  • Evolution of the Sequential Function Chart
  • Programming using the Sequential Function Chart
  • Entering the SFC program into the PLC
  • Modifying an SFC Program
  • Selective Branching
  • Parallel Branching

GreyToBinaryCode

Simulator

After learning the basics from the above manual, practice. Create programs yourself and test what you have learned. You can accomplish this by using simulators. Allot of the programming software will have simulators. The simulator will mimic the PLC hardware so you can test your programs before installing in the field. Traditionally I have not been a fan of simulators, but recently Automation Direct has introduced a simulator with their Do-More PLC. It is the Do-More Designer Software. This software simulator includes the entire instruction set (Not Just Bit Logic) as well as communication protocols. It can be downloaded and installed for free from the above link.

Indirect Addressing 2 Pointer

The next step I recommend is then to advance into some of the advanced instructions. An understanding of the numbering systems in the PLC will be a benefit. Math, PID, register manipulation and conversion instructions are just a few of the advanced programming you can learn. All of these and more instruction information can be obtained from reviewing the documentation from the PLC manual that you are programming. Once again all of these instructions are included in the Do-More Designer Software.

Indirect Addressing Animation

Program structure is the next topic. Allot of programmers would stop here and can do well with developing software, however there is much more that you can lean.  Sequencers give programmers the methods to change logic on the fly and allow troubleshooting the system easier. This method of programming can benefit you greatly and reduce the development time of your logic.

Omron HostLink Frame_Responseadu_pdu

The last step that I recommend learning is the sharing of information. I am meaning the information that you program through an HMI and/or SCADA package. This refers to understanding of the ways in which information can be gathered from the PLC and displayed in different ways. Here are a couple of previous articles that have been written on this subject:

How to Implement the Omron PLC Host Link Protocol 

Robust PLC Data Logger

iis107 display

As you can see, there is allot of information available to you to begin and lean PLC programming without spending a dime!  Remember that PLCs are similar to computers, (Moore’s Law) they increase in size and ability. Systems are expanding and changing everyday. Happy programming.

Do you know of additional tips or methods to share?
PLC Beginner’ s Guide – There are many different PLC manufacturers with different hardware and software. All of the programmable logic controllers have similar basic features. Here is how I would approach learning about basic PLCs.

Watch on YouTube : How you can learn PLC Programming without spending a dime!

If you have any questions or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.




How to Implement the Omron PLC Host Link Protocol

Hostlink communication protocol is a method developed by Omron for communication to PLC’s and other equipment. This ASCII based protocol is used over RS232 or RS422/RS485. It is a many to one implementation which means that you can communicate with up to 32 devices back to a master. (1:N) This communication on the industrial floor can control PLC’s, Temperature Controllers, Panel Meters, etc.

Our look at this protocol will include the wiring, setting of RS232 port settings, protocol format and  writing a VB6 program to read information from the PLC. I will also point you links to then store this information into a database and share over an intranet/internet. Lets get started.

Wiring of the communication ports will depend on the equipment purchased. If communicating over 15 meters, it is recommended to switch to RS422 or RS485 connection. However I have seen RS232 runs of 50 meters without an issue. It will depend on your implementation and electrical noise in the plant.
Omron Host Link Cable Connections

The above diagram is the basic communication needed for RS232C. Note that the shield of the communication wire is connected only to one side. This ensures that any noise induced in the communication is filtered to one end.

Settings for RS232C communications are set in a number of ways. Older Omron C**K PLC were set through a series of dip switches. Current Omron SMR1/CPM1 PLC’s are set though data memory locations.
Note: Most of the time, you need to cycle the power or switch to program / run mode for the setting to be activated.
Omron Host Link Settings 1 Omron Host Link Settings 2

I generally tend to leave everything at the default settings: 9600 bps, Even parity, 7 data bits, 1 stop bit. The default host link unit number is 00. (32 max. – 00 – 31)

Protocol Format
Each piece of equipment will have a list of parameters that can be read and written using the HostLink protocol. This can be found in the programming manual of the device. Here are the areas in the CPM1/CPM1A/CPM2A/CPM2C/SRM1(-V2) from the programming manual.

HostLink Areas

Lets take a look at the command to read the DM area. All of the commands and responses will be in an ASCII format.

HostLink DM Area Read

The command format begins with a ‘@‘ sign followed by the Node / Unit number that you wish to communicate. Header code is the command in which you with to execute. (RD) This header code will determine the next series of information. In our case the next four digits will be the beginning word followed by the next four digits to indicate the number of words. The next part of the command is the FCS (checksum) calculation. The comparison to this at each end will ensure that the command/response is correct. FCS is a 8 bit data converted into two ASCII characters. The 8 bits are a result of an Exclusive OR performed on the data from the beginning to the end of the text in the frame. In our case this would be performed on the following:

"@00RD00000010"

The last part of the command is the terminator. This is an ‘*’ followed by the character for the carriage return. (CHR$(13))

The response format begins with a ‘@’ sign followed by the Node / Unit number that you are communicating to. The header code is next (RD) followed by the End Code. The end code is a two digit ASCII code that indicates the message response / errors when executing the action. A normal code of ’00’ indicates that everything is fine. See the operation manual for the entire list of end codes for your equipment. The next part of the response depends on the header code executed. In our case it would contain the data requested. The last two parts of the response is the FCS and terminator just like the command format.

Omron HostLink Frame_Response

The above shows the timing of the command and responses.

Visual Basic VB6 (Example)
Now lets look at an example of reading the first 10 words from the DM area  of an Omron PLC.

HostLink VB6 Program1

The first step is the design the form. You can see that we have our ten DM area words set out to populate with values. We also have a T$ for transmit. This will show what we are sending to the PLC. The RXD$ will show what the response will be from the PLC.

The MSComm is used to communicate through the serial ports of the computer. The following is the settings for the communication port.

HostLink VB6 Program2

Here is the VB6 code for the program:
When the form loads the Date/Time will get updated and Timer1 is enabled. This timer controls the interval in which the commands get executed. (Set to 1 second)

Private Sub Form_Load()
 Label2.Caption = Format(Date, "YYYY/MM/DD") + "    " + Format(Time, "HH:MM:SS")
 Timer1.Enabled = True
 End Sub

The following code will open the communication port, set the command format, send the command through the port, receive the response through the port and display the information. It will then close the communication port.

Private Sub Timer1_Timer()
 Timer1.Enabled = False
 MSComm1.PortOpen = True
 Label2.Caption = Format(Date, "YYYY/MM/DD") + "    " + Format(Time, "HH:MM:SS")
'Check DM AREA DM0000 to DM0009 data update
 T$ = "@00RD00000010"
 charreturn = 51
 GoSub FCS
 GoSub communicate
'Show Transmit information
 Label24.Caption = Buffer
 'Show Returned information
 Label26.Caption = rxd$
If Mid(rxd$, 6, 2) = "00" And (Len(rxd$)) >= charreturn Then
 Label4.Caption = Mid(rxd$, 8, 4)
 Label6.Caption = Mid(rxd$, 12, 4)
 Label8.Caption = Mid(rxd$, 16, 4)
 Label10.Caption = Mid(rxd$, 20, 4)
 Label12.Caption = Mid(rxd$, 24, 4)
 Label14.Caption = Mid(rxd$, 28, 4)
 Label16.Caption = Mid(rxd$, 32, 4)
 Label18.Caption = Mid(rxd$, 36, 4)
 Label20.Caption = Mid(rxd$, 40, 4)
 Label22.Caption = Mid(rxd$, 44, 4)
 End If
 Timer1.Enabled = True
 MSComm1.PortOpen = False
 Exit Sub

The following is the subroutine to communicate. Timer2 is the amount of time to wait before expecting an answer on the communication port. Once the command has been sent a maximum of two seconds is waited for an response. If no response nothing is returned. When the response is obtained, the FCS is checked and if correct the information is returned.

communicate:
 rxd$ = ""
 Buffer = T$ + FCS$ + "*" + Chr$(13)
 MSComm1.Output = Buffer
 Timer2.Enabled = True
 Do
 DoEvents
 Loop Until Timer2.Enabled = False
 If Time > #11:59:50 PM# Then
 timeout = #12:00:02 AM#
 Else
 timeout = DateAdd("s", 2, Time)
 End If
 MSComm1.InputLen = 0
 Do
 If timeout <= Time Then GoTo timeoutcom
 DoEvents
 Loop Until MSComm1.InBufferCount >= charreturn
 rxd$ = MSComm1.Input
 fcs_rxd$ = Left((Right(rxd$, 4)), 2)
 If Left(rxd$, 1) = "@" Then
 T$ = Mid(rxd$, 1, (Len(rxd$) - 4))
 ElseIf Mid(rxd$, 2, 1) = "@" Then
 T$ = Mid(rxd$, 2, (Len(rxd$) - 5))
 rxd$ = Mid(rxd$, 2, (Len(rxd$) - 1))
 End If
 GoSub FCS
 If FCS <> fcs_rxd$ Then
 rxd$ = ""
 End If
 clearbuffer$ = MSComm1.Input
 Return

This is the FCS (checksum) calculation routine.

FCS:
 L = Len(T$)
 A = 0
 For J = 1 To L
 TJ$ = Mid$(T$, J, 1)
 A = Asc(TJ$) Xor A
 Next J
 FCS$ = Hex$(A)
 If Len(FCS$) = 1 Then FCS$ = "0" + FCS$
 Return

This is the routine that will execute if the response is not received within the time period expected.

timeoutcom:
 clearbuffer$ = MSComm1.Input
 rxd$ = ""
 Return
End Sub

Timer2 was used as a delay before looking for a response after sending the command.

Private Sub Timer2_Timer()
 Timer2.Enabled = False
 End Sub

Here is the code running:

HostLink VB6 Program3

Helpful Tips/Links:
– When troubleshooting serial communications it is sometimes helpful to use HyperTerminal. This program will send and receive information in/out of the serial ports.
HostLink Command Generator
HostLink Command Format

Watch on YouTube : How to Implement the Omron PLC Host Link Protocol

If you have any questions, need further information or would like a copy of this program please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.