All posts by garrys

Who Else Wants To Discover Takt Time?

Takt time is the beat of manufacturing. It is the rhythm of the company for making products or delivering service. Do you know what yours is? Let’s take a look at takt time and determine how to use it to our advantage.

This is a German word taken from beats in music, and used in lean manufacturing. Takt time is calculated by the total available time divided by the customer demand. This must be greater than our ability to produce product or we would be letting our customers down.Takt Time Balance

Takt Time = Total Available Time / Customer Demand 

Total Available Time:
This is the total available time for work to be performed. Lunch, breaks and daily meeting times are removed from this total, unless they are constantly covered by relief.

Customer Demand:
This is the average rate at which customers purchase products or service. It is expressed in the same time frame as Total Available Time. You can also look at projected purchases from the customer.

Example:
Total Available Time (Day):
8 hour shift x 60 = 480 minutes
480 minutes – (2*10 minute breaks) – (20 minute lunch) = 440 minutes
Customer Demand (Day):
500 units / 5 days = 100 units a day
Takt Time (Product Unit):
Total Available Time / Customer Demand
440 minutes / 100 units a day = 4.4 minutes or 264 seconds
Each product unit must be produced within 4.4 minutes.

Takt time is the pace the customer requires product. This is different from Lead Time, which is the total production time from product start to finish. The other definitions that get confused are Cycle Time and Target Cycle Time. The Target Cycle Time is the pace at which we will produce to ensure we meet customer demand. Cycle Time is the time the process cycles. Keep in mind all of these items when looking at satisfying customer demand.Takt Cycle Target Cycle Lead Times

Takt time is just a value that will show you your ability to meet customer demand. Material or the lack of it behind each machine is the indication within manufacturing that will show you your current situation. Stock will buffer the unevenness of work and breaks in the manufacturing process. The goal is to synchronise the flow from the first process to the last.

If customer demand is greater than the ability to produce the product or service then you would find that stock would be running out.Takt Time Demand High

If customer demand is less than the ability to produce the product or service then you would find an increase in stock.Takt Time Demand Low

A bottleneck is a point of congestion in a system. Work arrives quicker than what can be handled. It looks like the neck of a bottle which limits the ability to have liquid pass through. On the manufacturing floor, you can notice bottlenecks by the amount of material behind machines.

Bottleneck operations are those operations where the machine cycle > Takt Time.

BottleneckThe goal is to eliminate the bottlenecks by looking at our ability to handle customer demand through measures like Takt Time. This does not have to be a hard task. We have the ability through PLCs and data collection to monitor all of the different times discussed and ensure we satisfy customer demand.

Watch on YouTube : Who Else Wants To Discover Takt Time?
If you have any questions or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.

What Everybody Ought to Know About PLC Programming Languages

PLC programs are normally written in a special application on a personal computer, then downloaded to the PLC. This downloaded program is similar to compiled code to keep the program efficient. The program is stored in the PLC either in battery-backed-up RAM or some other non-volatile flash memory.

Albert Einstein said “The world as we have created it is a process of our thinking. It cannot be changed without changing our thinking” PLC programming languages have evolved to both adapt and change the way we program these units. We will look at all five programming languages as defined by the IEC 61131-3 Standard.

  • Structured Text (ST)
  • Function Block Diagram (FBD)
  • Sequential Function Chart (SFC)
  • Instruction List (IL)
  • Ladder Diagram (LD)

Not all of these programmable controller languages are available in every PLC. Ladder logic programming is by far the largest percentage of use in PLC’s today. Fundamental concepts of PLC programming are common to all manufacturers. Differences in I/O addressing, memory organization, and instruction sets mean that PLC programs are never interchangeable between different makers. Even within the same product line of a single manufacturer, different models may not be directly compatible. This is true when looking at manufactures that private label other controllers.

Estimates are as high as 95% of installations use ladder logic programming in the programmable logic controller.

The PLC programming language that is used can be decided when you look at the following:

  • Maintenance and troubleshooting
  • Knowledge of language
  • Acceptance of the country, location, or individual plant
  • Application of the PLC
  • Ease of changing PLC program

The actual programming of the PLC is the second last step in the development of programs. The five steps to PLC program development is a good method to follow before picking what programming language to use. As mentioned before the languages supported by each PLC may differ. Please refer to the types of programming that are available for your model and version of PLC.

Let’s quickly review some of the different programming languages for the PLC.

Structured Text (ST) is a high level programming language that closely resembles Pascale programming. Statements are used to define what to execute.
ST MP50pro_st

Function Block Diagram (FBD) is a graphical representation of AND, NAND, OR, NOR gates, etc. that are drawn. It will describe the function between input and output variables.
FBD MP50pro_fbd

Sequential Function Chart (SFC) is like a flowchart of your program. It defines the steps through which your program moves.
SFC MP50pro_sfc

Instruction List (IL) can also be referred to as mnemonic code and statement list. It contains simple instructions for looking at your variables.
IL MP50pro_il

Ladder Diagram (LD) is the most popular programming language for the PLC. It was written to mimic the mechanical relays in the panel that the programmable logic controller replaced. It has two vertical rails and a series of horizontal rungs between them. Controllers will usually scan from left to right top to bottom. The output of one rung is available for the next rung.
LD MP50pro_ladder

Note: All pictures from PLCopen IEC 61131 Basics

PLC programming methods are evolving. PLC Open is an organization that is defining new methods to take advantage of the latest computer innovations. They have defined the IL method of programming to XML (Extended Markup Language) which is used for web development. This in my opinion keeps moving the ideal method, to a standard way to program PLCs.

If you have any questions or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.

PLC Programming Example – Paint Spraying

We will look at a PLC basic tutorial of a paint spraying station. Following the 5 steps to program development this PLC programming example should fully explain the procedure for developing the PLC program logic. Ladder will be our PLC programming language.

We will be using the Do-more Designer software which comes with a simulator. This fully functional program is offered free of charge at automation direct.

Define the task:

What has to happen?
Paint Station 01

Paint spraying system where boxes are fed by gravity through a feeder magazine one at a time onto a moving conveyor belt. Upon the start signal, boxes are pushed towards the conveyor by valve 1. This is a cylinder which extends and retracts which operates switches S1 and S2 respectfully. A spraying nozzle paints each box as it passes under the paint spray controlled by valve 2. A sensor (S3) counts each box being sprayed. When 6 boxes have been painted the valve 2 shuts off (paint spray) and valve 1 (cylinder) stops moving boxes onto the conveyor. Three seconds later the conveyor stops moving and the hopper with its load moves forward (valve 3) where it is emptied. Ten seconds later the hopper returns to the original position. The cycle is then complete and waits for a start signal again.

Define the Inputs and Outputs:

Inputs:
Start Switch – On/Off (Normally Open) – NO
Stop Switch – On/Off (Normally Closed) – NC
S1 – Valve 1 (cylinder retract) On/Off – NO
S2 – Valve 1 (cylinder extend) On/Off – NO
S3 – Box Detected- On/Off – NO
Outputs:
Motor – On/Off (Conveyor Run)
Valve 1- Cylinder to feed boxes – On/Off
Valve 2- Paint Spray – On/Off
Valve 3- Cylinder to move hopper – On/Off

Develop a logical sequence of operation:

Fully understanding the logic before starting to program can save you time and frustration.

Sequence Table: The following is a sequence table for our paint spraying application.

Sequence Table
1 – Input / Ouput ON
0 – Input / Output OFF
x – Input / Output Does not Matter
When power goes off and comes on the sequence will continue. This means that we must use memory retentive areas of the PLC. The stop pushbutton will stop the sequence. The start will resume until the end.

Develop the PLC program:

The best way to see the development of the programmable logic controller program is to follow the sequence table along with the following program. You will see the direct correlation between the two and get a good understanding of the process.

This is the main process start and stop bit. V0:0 is used because it is memory retentive.
Paint Stn Program 1

Control of the Motor (Conveyor) and the paint spray is done with the V0:0 contact in front of the actual PLC output. The conveyor and paint spray will stop when the timer 0 is done. This is the delay after the last box is detected to allow the box to be painted and loaded onto the hopper.
Paint Stn Program 2

Control of the box movement onto the conveyor. As long as we have the process start and the hopper count is not complete this will allow the cylinder to put boxes on the conveyor.
Paint Stn Program 3

Count number of boxes in the hopper via S3. The counter is memory retentive.
Paint Stn Program 4

Timer to stop the conveyor and spray after the last box is detected for the hopper. This will allow time for the box to be sprayed and loaded into the hopper.
Paint Stn Program 5

Hopper movement to load and unload the boxes.
Paint Stn Program 6

The hopper unload timer is to unload the boxes and will then trigger the reset conveyor timer, box counter and the process start bit (V0:0).
Paint Stn Program 7

Test the program:

Paint Spraying
Test the program with a simulator or actual machine. Make modifications as necessary. Remember to follow up after a time frame to see if any problems arise that need to be addressed with the program.

Watch on YouTube : PLC Programming Example – Paint Spraying
If you have any questions or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.

PLC Programming Example – Shift Register (Conveyor Reject)

Allot of times when programming a PLC you need to track what has previously happened. Shift registers allow you to do just that. We will look at a PLC basic tutorial of a conveyor belt and reject station. Following the 5 steps to program development this PLC programming example should fully explain the function of shift registers. Ladder will be our PLC programming language.

We will be using the Do-more Designer software which comes with a simulator. This fully functional program is offered free of charge at automation direct.

Define the task:

What has to happen?
Conveyor Reject 0

A start pushbutton (NO) is used to start the conveyor and a stop pushbutton (NC) is used to stop. Sensor B detects product on the conveyor belt and sensor A will detect if it is too large and needs to be rejected. The product is tracked along the conveyor belt and when under the reject station the Reject Blow Off will expel the bad product. Product is randomly placed on the conveyor belt, so an incremental encoder is used to track the conveyor movement. The reset pushbutton (NO) will signal that all of the product on the conveyor has been removed between the sensors and reject blow off.

Define the Inputs and Outputs:

Inputs: Start Switch – On/Off (Normally Open) – NO Stop Switch – On/Off (Normally Closed) – NC Reset Switch – On/Off – NO Motor Encoder – On/Off – This will give a discrete signal when the conveyor is moving. It picks up the movement of the free wheel. Sensor A (Part Reject) – On/Off – NO Sensor B (Part Present) – On/Off – NO

Outputs: Motor – On/Off (Conveyor Run) Air Blow Off – On/Off (Reject)
Inputs_Outputs

Develop a logical sequence of operation:

Fully understanding the logic before starting to program can save you time and frustration.

Sequence Table: The following is a sequence table for our conveyor reject application.
Sequence Table

It is a simple sequence table, but clarifies the following: When power goes off and comes on the sequence will continue. This means that the shift sequencer must be memory retentive. Sensor A and B must be on to get tracked with a shift register.

Shift Registers: The Shift Register (SR) instruction shifts data through a predefined number of BIT locations. These BIT locations can be a range of BITs, a single Word or DWord, or a range of Words or DWords. The instruction has three inputs. Data, Clock and Reset. The data input will load the beginning bit with a ‘1’ if it is on or ‘0’ if it is not. Clock input is used to shift the data through the shift register. In our example, we will be using the encoder on the conveyor to track the reject container. So each pulse of the clock represents a distance on the conveyor. The last input is the reset. It will place ‘0’ in all of the bits within the shift register.
Shift Register

Develop the PLC program:

Start and stop of the conveyor motor.
Program Conveyor Reject 1

Shift register to track the rejected parts. This will move the bits with each pulse of the encoder. Note that the ‘V’ memory is used because it is memory retentive.
Program Conveyor Reject 2

This will look at the bit in front of the reject station. We can measure and count off the length (conveyor) and then find out what the bit location will be at the reject location.Program Conveyor Reject 3

Test the program:

Test the program with a simulator or actual machine. Make modifications as necessary. Remember to follow up after a time frame to see if any problems arise that need to be addressed with the program.

Conveyor Reject

Notes: Sometimes you can use multiple shift registers in your program. This can be helpful if you want to actually track the container as well as the rejects. You could also use bit shift right (BSR) and bit shift left instructions (BSR) to do the same thing as we did with the shift register instruction. In the Do-more PLC it is rotate left (ROTL) and rotate right (ROTR) instructions. Always check your instruction set of the controller that you are working with before starting to program.

Watch on YouTube : PLC Programming Example – Shift Register (Conveyor Reject)

Additional information on shift registers can be seen at the following URL:
http://accautomation.ca/plc-programming-example-sorting-station-shift-register/
This PLC programming example will look at sorting coloured tags into three different exits. The 3D simulation will use three different shift registers to trigger when to direct the correct colour tag.
Watch the sequence of operation video below.
Watch on YouTube : PLC Programming Example – Sorting Station Testing

If you have any questions or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.

PLC Programming Example – Process Mixer

We will apply the five steps to PLC Program development to our next programming example of a process mixer.

1 – Define the task:

PLC Prgramming Example - Process Mixer
A normally open start and normally closed stop pushbuttons are used to start and stop the process. When the start button is pressed, solenoid A engergizes to start filling the tank. As the tank fills, the empty level sensor switch closes. When the tank is full, the full level sensor switch closes. Solenoid A is de-energized. Mixer motor starts and runs for 3 minutes to mix the liquid.  When the agitate motor stops, solenoid B is engergized to empty the tank. When the tank is completely empty, the empty sensor switch opens to de-engergize solenoid B. The start button is pressed to repeat the sequence.

2 – Define the Inputs and Outputs:

Inputs:
Start Pushbutton – Normally Open – On/Off
Stop Pushbutton – Normally Closed – On/Off
Empty Sensor Switch – On/Off
Full Sensor Switch – On/Off
Timer 3 minutes done bit – On/Off (Internal)

Outputs:
Mixer Motor – On/Off
Solenoid A – Fill – On/Off
Solenoid B – Empty – On/Off
Timer 3 minutes – (Internal)

3 – Develop a logical sequence of operation:

A flow chart or sequence table is used to fully understand the process.  It will also prompt questions like the following.

What happens when electrical power and/or pneumatic air is lost? What happens when the input / output devices fail? Do we need redundancy?

This is the step where you can save yourself allot of work by understanding everything about the operation. It will help prevent you from continuously re-writing the PLC logic. Knowing all of these answers upfront is vital in the development of the PLC program.

Process Mixer - Sequence Table

4 – Develop the PLC program

Since we need to continue the sequence when the power goes off then memory retentive locations in the PLC must be used. In our example we will use the ‘V Memory’ locations.

The first thing in our program is to control the start and stop functions. This is done through a latching circuit. From the sequence table we know that to reset the sequence we need to have the timer done and the empty sensor off.Process Mixer Program 1

The filling of the tank is done through Solenoid A. It is turned on by the start signal and off by the full sensor switch. (Sequence Table) You will notice that we have a memory retentive output and the actual output to active the solenoid.Process Mixer Program 2

The memory retentive timer will start timing when we have the start sequence signal and when the empty and fill sensors are on. The timer will reset when the empty and fill sensors are off. Mixing motor will be on when the timer is timing and when the timer is not done.Process Mixer Program 3

Solenoid B turns on to empty the tank when the timer is done and the full and empty sensors are on. It will reset when the empty sensor switch goes off.Process Mixer Program 4

5- Test the program

PLC Programming Example - Process Mixer

Test the program under many conditions. Check to see what happens when power is removed.

Using this five step to program development technique will shorten your programming time. The result will be a better defined logic and easier to understand program, because it has within the documentation the logic flow chart or sequence table.

Watch on YouTube : PLC Programming Example – Process Mixer

Factory IO provides a 3D simulation of the process. Testing of the program is important and should be done in a variety of ways. Factory IO provides a straight forward method of seeing your program in action before you wire your application.

We will be using the BRX PLC Modbus TCP Server (Slave). Factory IO will be the Modbus TCP Client (Master). When the tank fills up we will start a dwell time instead of the mixer time for the simulation.
Here is the mapping of the inputs and outputs using Factory IO.

Factory IO Website is at the following URL:
https://factoryio.com/
Documentation is well done. Start at the ‘Getting Started’ at the following URL:
https://factoryio.com/docs/

You can download the PLC program and Factory IO scene here.

Watch the following video to see this simulation in action.

Watch on YouTube : Process Mixer Test Simulation
If you have any questions or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.

Five Steps to PLC Program Development

Programming a PLC can sometimes be a daunting task. The best method is to break the task into some smaller steps. These are the steps that I have used for years. We will apply them to a die stamping application.

1 – Define the task:

What has to happen?
Die Stamping

A master switch is used to start the process and to shut it down. Two sensors: an upper limit switch that indicates when the piston is fully retracted and a lower limit switch that indicates when the piston is fully extended. When the master switch is turned on the piston reciprocates between the extended and retracted positions. This is achieved with an up and down solenoid. When the master switch is turned off, the piston returns to the retracted position and all solenoids are off.

2 – Define the Inputs and Outputs:

Inputs:
Master Switch – On/Off
Upper Limit Switch – On/Off
Lower Limit Switch – On/Off

Outputs:
Down Solenoid – On/Off
Up Solenoid – On/Off

3 – Develop a logical sequence of operation:

This can be done with the use of a flow chart or sequence table. You can use anything to fully understand the logic of the operation before programming. Many people do not use this step and jump straight to programming.

Fully understanding the logic before starting to program can save you time and frustration.

Sequence Table: The following is a sequence table for our die stamping application. I usually review this sequence with the person with the most knowledge of the machine. This can be the designer and / or the machine operator.
Sequence Table

How to read the Sequence Table: Follow the steps from left to right, top to bottom. Inputs and outputs are labelled as 1 (ON), 0 (OFF) or X (Does not Matter). Step 1 indicates that it does not matter the upper and lower limit switch positions. The master switch is off, so the up and down solenoids are off. Steps 3 and 4 repeat themselves as long as the master switch is on.

Note: You will notice that at step 2, after the master switch turns on the up solenoid will be activated. So the piston always retracts when the master switch is first turned on.  This operation was picked up in development of our logical sequence.

4 – Develop the PLC program:

Look at the sequence table in respect to the following logic. I have used Set and Reset conditions so it is easily followed by the sequence table. When the master switch turns on the up solenoid is activated. Notice the first rung is a direct correlation. Follow the rest of the sequence table with this ladder logic.

PLC Program Die Stamping
Document, Document, Document This is a vital part of every program, which will save you time and money when you have to return to the program years later.

5 – Test the program:

Die_Stamping
Test the program with a simulator or actual machine. Make modifications as necessary. Check with the people most knowledgeable on the machine, to see if it is doing what they expect. Do they need something else? Follow up after a time frame to see if any problems arise that need to be addressed.

These five steps will help you in your PLC programming.

  1. Define the task
  2. Define the inputs and outputs
  3. Develop a logical sequence of operation
  4. Develop the PLC program
  5. Test the program

The five steps form the basis of all PLC development. You will notice that the actual programming does not occur until the second last step. Usually more time is spent on understanding the task and sequence of operation.

Watch on YouTube : Five Steps to PLC Program Development
If you have any questions or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.

Now You Can Have Data Logging Free

A data logger is also known as a data recorder or  data acquisition. It is a method to record data over a period of time and/or events.

The recorded information can come from sensors in the field. They can be digital or analog. With analog (voltage or current) we can measure temperature, pressure, sound, weight, length, etc. Digital data can be used for counts, times, events (motor overload), etc.

Data collecting can be time or event driven. Time based would be like collecting data every minute, shift, day etc. An event based collection would be from an error in the field such as an overload of a motor or a fault with a temperature controller.

stock-vector-analysis-magnifying-glass-over-seamless-background-with-different-association-terms-vector-69601843

Data mining / analysis is the most important part of the data logging.

Data mining / analysis is the way in which we look at the data and determine  what to do. Clustering is a method to look at the data in similar groups for comparison. An example of this would be the amount of material made on individual shifts in the plant.  Setting up the data logging in a way to examine the output over time is very helpful in determining methods to increase productivity in the manufacturing environment.

Time studies or observations are vital in the lean manufacturing world. Data logging can be useful in assisting with these studies. However, unlike the usual manual approach, this time study can be continuous.

Doing Time Observations

ebook_RobustDataLoggingforFreeData logging does not have to be expensive. It is also not as intimidating as it may sound.

The ‘Robust Data Logging for Free’ eBook is available in a free download. Just subscribe to ACC Automation to get the link for the free download.
 
This eBook will walk you though step by step on getting information into a database so you can start analysing the data. With traditional loggers, software will read the memory of the PLC and store in a local computer. If the network stops or the PLC communication fails then the logging will stop.
Creating a robust PLC data logger allows the communication to be stopped for a period of time without losing any of the data for collection. This is accomplished by storing the data locally on the PLC until communication is restored. All of the data is then read without loss. The amount of time that the connection can be lost will be dependent on the memory size of the PLC and the frequency of the data collected.
This series will walk you through the steps to create and implement a robust PLC data logger using the following equipment and hardware.
  • Automation Direct – Do-More – H2-DM1E PLC (Ethernet Modbus TCP)
  • Do-more Designer 1.3 (Simulator instead of PLC mentioned above)
  • Windows based computer running IIS
  • Visual Basic 6

Additional information on Omron Host Link Protocol and Indirect Addressing can be found in the eBook.

The ‘Robust Data Logging for Free’ eBook is available for a free download. Just subscribe to ACC Automation on the left side menu of the website to get the link for the free download.

Watch on YouTube : Now You Can Have Robust Data Logging For Free
If you have any questions or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.

How to Send Email to SMTP Server

Simple mail transfer protocol (SMTP) is the email protocol for sending information. We can take advantage of this ability to email from our data logged from the PLC. Shift reports on productivity can be automatically emailed to recipients. Faults or errors detected by the PLC can be emailed directly to individuals for correction.

We will use visual basic 6 (VB6) to send an email message to the SMTP Google Gmail server. Using this method we can use HTML code to format our messages. Attachments can also be added to the email message. In this example I have added the ACC icon file.

The first step is to add a reference to Microsoft CDO for Windows 2000 Library.  Project -> References CDO References SMTP Email

Make a simple form:
Form SMTP Email
This will have one command button on it labeled “Send Mail”

The code for the command button will be as follows:
Private Sub Command1_Click()

Call SendEmail
End Sub

Add the following Sub SendEmail code to the project :
‘Sample code that is used to send emails from any SMPT server using CDO in Visual Basic 6.0.

‘Added a reference to the project by navigating to Project -> references and adding Microsoft CDO for windows 2000 Library.
Sub SendEmail()
On Error Resume Next ‘ Set up error checking
Set cdoMsg = CreateObject(“CDO.Message”)
Set cdoConf = CreateObject(“CDO.Configuration”)
Set cdoFields = cdoConf.Fields
‘ Send one copy with Google SMTP server (with autentication)
schema = “http://schemas.microsoft.com/cdo/configuration/”
cdoFields.Item(schema & “sendusing”) = 2
cdoFields.Item(schema & “smtpserver”) = “smtp.gmail.com”
cdoFields.Item(schema & “smtpserverport”) = 465
cdoFields.Item(schema & “smtpauthenticate”) = 1
cdoFields.Item(schema & “sendusername”) = “gclshortt@gmail.com”
cdoFields.Item(schema & “sendpassword”) = “password”
cdoFields.Item(schema & “smtpusessl”) = 1
cdoFields.Update
With cdoMsg
    .To = “gshortt@domtech.net”
    .From = “gclshortt@gmail.com”
    .Subject = “Send email to gmail”
    ‘ Body of message can be any HTML code
    .HTMLBody = “Test message using CDO in vb6 to Gmail smtp”
    ‘ Add any attachments to the message
    .AddAttachment “c:\AccDo.ico”
    Set .Configuration = cdoConf
    ‘ Send the message
    .Send
End With
‘Check for errors and display message
If Err.Number = 0 Then
      MsgBox “Email Send Successfully”, , “Email”
Else
      MsgBox “Email Error” & Err.Number, , “Email”
End If
Set cdoMsg = Nothing
Set cdoConf = Nothing
Set cdoFields = Nothing
End Sub

When you run the program you will get one of the following messages depending if the email was correctly sent or not.

SMTP Email Send Successfully SMTP Email Error

Here is the message that arrives to the recipient:
Gmail SMTP Message

Simple mail transfer protocol is an easy way to share information from the PLC data collected.
You can download the following VB6 sample code here.

Watch on YouTube : How to Send Email to SMTP Server
If you have any questions or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.

Who Else Wants to Learn About On Off and PID Control?

Process control can be a bit intimidating. We will try and break down both On/Off and PID control in a fun way. This is a simple analogy without any math.

On/Off control can be used effectively with temperature control. Everyone’s house usually has a temperature controller that uses an On/Off control. When the temperature is below the set value (SV) the output switches on. The output will remain on heating the house until the present value (PV) is above the set value. At this point the output will then go off. The house will constantly be doing this in a cyclic way. This means that the temperature of the house will vary a few degrees.
sine_wave

We can plot this out like the sign wave above. The set point is at the middle. By the time the output is turned off the thermo mass continues to heat the house, before starting to cool down. The same is true when the output is turned back on. It will cool down a little more then start to heat up again. This is called hunting. We can not get exactly on the set point value and stay there.

Lets look at another way to explain:
Control On Off

You are in a car and can only use full gas or full brake. Racing toward the stop sign at full gas, you use full brake at the stop sign line. Naturally you go passed the stop sign and eventually come to a full stop. Putting the car in reverse, you again use full gas back toward the stop sign line. When you hit the line you apply full brake. Missing the mark again.  This is like On/Off control action.

If we wanted to control the method a little closer then we could program in a hysteresis. (Dead band) This is just a range in which nothing would happen. It would take into consideration the amount that we went over the line in both directions.
Control On Off with Deadband

If we need to hit the stop sign target a little more accurately then we can now introduce another control method.

PID is a time based control logic. It will look at a control period (CP) and determine what to do for the next. In a temperature control application the control period would be 20 seconds. In a servo valve application, it can be 1 second. Lets look at each of the control methods in the PID with respect to our car analogy.

Proportional Control (P) – This will increase in amount based upon the error. The closer we get to the set point, the control period will be on for a longer period of time. (Reference to the output percentage  of control period time.)

Control Proportional

In our example the car can be seen applying the brakes proportionally longer and longer times before the stop sign line is reached. If it goes over the stop sign line the car will apply the brakes even longer depending on the amount over the line. This is proportional control.

Integral (I) – Using just proportional control would always leave us below the set point. We need a method to reset us to the actual set point. This is where integration comes into play. It is interesting to note that PI control is one the most commonly used in the industry.

Control Intregral

The car above is travelling along the road, following the dashed lines. If we used just proportional control we would find ourselves riding in the ditch. The integral control will move us into our lane and keep us close to the dash line.

Derivative (D) – This mode of control will look at rate of change and adapt our control to get us back to set point. Remember that everything is based upon a control period which is time. PI rely on the fact that everything remains constant in your control. D will take into account the differences over time.

Control Differential

In our car analogy the derivative function of the control will continually adjust as we move up the hill and down the other side. It will not do much as we drive along the straight road way.

We have looked at a very basic analogy of control logic without all of the details of math. This can aid in understanding what your process is doing and methods to correct. Further information can be obtained by the following references:

PID without a PhD By Tim Wescott
Understanding PID in 4 minutes
PID Control – A brief introduction
PID Controllers Explained

Nice project using PID:
Desktop Line Following Robot

Watch on YouTube : Who Else Wants to Learn About On / Off and PID Control?
If you have any questions or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.

How to Make a One Shot in the PLC

A one shot in the PLC will turn an output on for one scan. This is used to trigger events that should only happen once. An example of this would be to increment a value in memory. If a one shot is not used, then every scan of the PLC will increment the value.

One shots are known by several other names. Differential Up (DIFU), Differential Down (DIFD), One Shot Relay (OSR), Powerflow Modifier, Leading edge contact, Trailing edge contact, etc. This all relates to the programmable controller that you are programming.

Lets take a look at programming a one shot using bit logic only. We will program both a leading edge one shot and a trailing edge one shot bit. This program will work in all PLCs.
Note: The white background in the increment (INC) instruction just indicates the reset for the animation.

One Shot Bit Leading EdgeLeading edge one shot bit: This will turn on a bit for one scan when the input condition makes a transition from 0 to 1. (Off to on)
When input X0 turns on C0 is turned on for one scan. This is because it is in series with the C1 lead work bit. The next rung will latch this on and not unlatch it until the input condition X0 turns off. C0 will only be on for one scan when X0 turns on.

One Shot Bit Trailing EdgeTrailing edge one shot bit: This will turn on a bit for one scan when the input condition makes a transition from 1 to 0. (On to off)
When input X0 turns off C2 is turned on for one scan. This is because it is in series with C3 trail work bit. The next rung will latch this on and not unlatch it until the input condition X0 turns off.

The Do-more PLC has several different ways to do the leading and trailing edge one shots. Here are a couple:

Leading and Trailing Edge Contact

The leading or trailing edge contact instruction will allow logic flow for one scan from a transition. (On to off / Off to on)

Leading and Trailing Edge Powerflow Modifier

The leading and trailing edge Powerflow Modifier is placed before the output. It will turn multiple input signals into a one shot for the output.

Watch on YouTube : How to Make a One Shot in the PLC
If you have any questions or need further information please contact me.
Thank you,
Garry



If you’re like most of my readers, you’re committed to learning about technology. Numbering systems used in PLC’s are not difficult to learn and understand. We will walk through the numbering systems used in PLCs. This includes Bits, Decimal, Hexadecimal, ASCII and Floating Point.

To get this free article, subscribe to my free email newsletter.


Use the information to inform other people how numbering systems work. Sign up now.

The ‘Robust Data Logging for Free’ eBook is also available as a free download. The link is included when you subscribe to ACC Automation.